epicyon/city.py

329 lines
12 KiB
Python

__filename__ = "city.py"
__author__ = "Bob Mottram"
__license__ = "AGPL3+"
__version__ = "1.2.0"
__maintainer__ = "Bob Mottram"
__email__ = "bob@freedombone.net"
__status__ = "Production"
__module_group__ = "Spoofing"
import os
import datetime
import random
import math
from random import randint
# states which the simulated city dweller can be in
PERSON_SLEEP = 0
PERSON_WORK = 1
PERSON_PLAY = 2
PERSON_SHOP = 3
PERSON_EVENING = 4
PERSON_PARTY = 5
def _getDecoyCamera(decoySeed: int) -> (str, str, int):
"""Returns a decoy camera make and model which took the photo
"""
cameras = [
["Apple", "iPhone SE"],
["Apple", "iPhone XR"],
["Apple", "iPhone 6"],
["Apple", "iPhone 7"],
["Apple", "iPhone 8"],
["Apple", "iPhone 11"],
["Apple", "iPhone 11 Pro"],
["Apple", "iPhone 12"],
["Apple", "iPhone 12 Mini"],
["Apple", "iPhone 12 Pro Max"],
["Samsung", "Galaxy Note 20 Ultra"],
["Samsung", "Galaxy S20 Plus"],
["Samsung", "Galaxy S20 FE 5G"],
["Samsung", "Galaxy Z FOLD 2"],
["Samsung", "Galaxy S10 Plus"],
["Samsung", "Galaxy S10e"],
["Samsung", "Galaxy Z Flip"],
["Samsung", "Galaxy A51"],
["Samsung", "Galaxy S10"],
["Samsung", "Galaxy S10 Plus"],
["Samsung", "Galaxy S10e"],
["Samsung", "Galaxy S10 5G"],
["Samsung", "Galaxy A60"],
["Samsung", "Note 10"],
["Samsung", "Note 10 Plus"],
["Samsung", "Galaxy S21 Ultra"],
["Samsung", "Galaxy Note 20 Ultra"],
["Samsung", "Galaxy S21"],
["Samsung", "Galaxy S21 Plus"],
["Samsung", "Galaxy S20 FE"],
["Samsung", "Galaxy Z Fold 2"],
["Samsung", "Galaxy A52 5G"],
["Samsung", "Galaxy A71 5G"],
["Google", "Pixel 5"],
["Google", "Pixel 4a"],
["Google", "Pixel 4 XL"],
["Google", "Pixel 3 XL"],
["Google", "Pixel 4"],
["Google", "Pixel 4a 5G"],
["Google", "Pixel 3"],
["Google", "Pixel 3a"]
]
randgen = random.Random(decoySeed)
index = randgen.randint(0, len(cameras) - 1)
serialNumber = randgen.randint(100000000000, 999999999999999999999999)
return cameras[index][0], cameras[index][1], serialNumber
def _getCityPulse(currTimeOfDay, decoySeed: int) -> (float, float):
"""This simulates expected average patterns of movement in a city.
Jane or Joe average lives and works in the city, commuting in
and out of the central district for work. They have a unique
life pattern, which machine learning can latch onto.
This returns a polar coordinate for the simulated city dweller:
Distance from the city centre is in the range 0.0 - 1.0
Angle is in radians
"""
randgen = random.Random(decoySeed)
variance = 3
busyStates = (PERSON_WORK, PERSON_SHOP, PERSON_PLAY, PERSON_PARTY)
dataDecoyState = PERSON_SLEEP
weekday = currTimeOfDay.weekday()
minHour = 7 + randint(0, variance)
maxHour = 17 + randint(0, variance)
if currTimeOfDay.hour > minHour:
if currTimeOfDay.hour <= maxHour:
if weekday < 5:
dataDecoyState = PERSON_WORK
elif weekday == 5:
dataDecoyState = PERSON_SHOP
else:
dataDecoyState = PERSON_PLAY
else:
if weekday < 5:
dataDecoyState = PERSON_EVENING
else:
dataDecoyState = PERSON_PARTY
randgen2 = random.Random(decoySeed + dataDecoyState)
angleRadians = \
(randgen2.randint(0, 100000) / 100000) * 2 * math.pi
# some people are quite random, others have more predictable habits
decoyRandomness = randgen.randint(1, 3)
# occasionally throw in a wildcard to keep the machine learning guessing
if randint(0, 100) < decoyRandomness:
distanceFromCityCenter = (randint(0, 100000) / 100000)
angleRadians = (randint(0, 100000) / 100000) * 2 * math.pi
else:
# what consitutes the central district is fuzzy
centralDistrictFuzz = (randgen.randint(0, 100000) / 100000) * 0.1
busyRadius = 0.3 + centralDistrictFuzz
if dataDecoyState in busyStates:
# if we are busy then we're somewhere in the city center
distanceFromCityCenter = \
(randgen.randint(0, 100000) / 100000) * busyRadius
else:
# otherwise we're in the burbs
distanceFromCityCenter = busyRadius + \
((1.0 - busyRadius) * (randgen.randint(0, 100000) / 100000))
return distanceFromCityCenter, angleRadians
def parseNogoString(nogoLine: str) -> []:
"""Parses a line from locations_nogo.txt and returns the polygon
"""
polygonStr = nogoLine.split(':', 1)[1]
if ';' in polygonStr:
pts = polygonStr.split(';')
else:
pts = polygonStr.split(',')
if len(pts) <= 4:
return []
polygon = []
for index in range(int(len(pts)/2)):
if index*2 + 1 >= len(pts):
break
longitudeStr = pts[index*2].strip()
latitudeStr = pts[index*2 + 1].strip()
if 'E' in latitudeStr or 'W' in latitudeStr:
longitudeStr = pts[index*2 + 1].strip()
latitudeStr = pts[index*2].strip()
if 'E' in longitudeStr:
longitudeStr = \
longitudeStr.replace('E', '')
longitude = float(longitudeStr)
elif 'W' in longitudeStr:
longitudeStr = \
longitudeStr.replace('W', '')
longitude = -float(longitudeStr)
else:
longitude = float(longitudeStr)
latitude = float(latitudeStr)
polygon.append([latitude, longitude])
return polygon
def spoofGeolocation(baseDir: str,
city: str, currTime, decoySeed: int,
citiesList: [],
nogoList: []) -> (float, float, str, str,
str, str, int):
"""Given a city and the current time spoofs the location
for an image
returns latitude, longitude, N/S, E/W,
camera make, camera model, camera serial number
"""
locationsFilename = baseDir + '/custom_locations.txt'
if not os.path.isfile(locationsFilename):
locationsFilename = baseDir + '/locations.txt'
nogoFilename = baseDir + '/custom_locations_nogo.txt'
if not os.path.isfile(nogoFilename):
nogoFilename = baseDir + '/locations_nogo.txt'
manCityRadius = 0.1
varianceAtLocation = 0.0004
default_latitude = 51.8744
default_longitude = 0.368333
default_latdirection = 'N'
default_longdirection = 'W'
if citiesList:
cities = citiesList
else:
if not os.path.isfile(locationsFilename):
return (default_latitude, default_longitude,
default_latdirection, default_longdirection,
"", "", 0)
cities = []
with open(locationsFilename, "r") as f:
cities = f.readlines()
nogo = []
if nogoList:
nogo = nogoList
else:
if os.path.isfile(nogoFilename):
with open(nogoFilename, "r") as f:
nogoList = f.readlines()
for line in nogoList:
if line.startswith(city + ':'):
polygon = parseNogoString(line)
if polygon:
nogo.append(polygon)
city = city.lower()
for cityName in cities:
if city in cityName.lower():
cityFields = cityName.split(':')
latitude = cityFields[1]
longitude = cityFields[2]
areaKm2 = 0
if len(cityFields) > 3:
areaKm2 = int(cityFields[3])
latdirection = 'N'
longdirection = 'E'
if 'S' in latitude:
latdirection = 'S'
latitude = latitude.replace('S', '')
if 'W' in longitude:
longdirection = 'W'
longitude = longitude.replace('W', '')
latitude = float(latitude)
longitude = float(longitude)
# get the time of day at the city
approxTimeZone = int(longitude / 15.0)
if longdirection == 'E':
approxTimeZone = -approxTimeZone
currTimeAdjusted = currTime - \
datetime.timedelta(hours=approxTimeZone)
camMake, camModel, camSerialNumber = \
_getDecoyCamera(decoySeed)
validCoord = False
seedOffset = 0
while not validCoord:
# patterns of activity change in the city over time
(distanceFromCityCenter, angleRadians) = \
_getCityPulse(currTimeAdjusted, decoySeed + seedOffset)
# The city radius value is in longitude and the reference
# is Manchester. Adjust for the radius of the chosen city.
if areaKm2 > 1:
manRadius = math.sqrt(1276 / math.pi)
radius = math.sqrt(areaKm2 / math.pi)
cityRadiusDeg = (radius / manRadius) * manCityRadius
else:
cityRadiusDeg = manCityRadius
# Get the position within the city, with some randomness added
latitude += \
distanceFromCityCenter * cityRadiusDeg * \
math.cos(angleRadians)
longitude += \
distanceFromCityCenter * cityRadiusDeg * \
math.sin(angleRadians)
longval = longitude
if longdirection == 'W':
longval = -longitude
validCoord = not pointInNogo(nogo, latitude, longval)
if not validCoord:
seedOffset += 1
if seedOffset > 100:
break
# add a small amount of variance around the location
fraction = randint(0, 100000) / 100000
distanceFromLocation = fraction * fraction * varianceAtLocation
fraction = randint(0, 100000) / 100000
angleFromLocation = fraction * 2 * math.pi
latitude += distanceFromLocation * math.cos(angleFromLocation)
longitude += distanceFromLocation * math.sin(angleFromLocation)
# gps locations aren't transcendental, so round to a fixed
# number of decimal places
latitude = int(latitude * 100000) / 100000.0
longitude = int(longitude * 100000) / 100000.0
return (latitude, longitude, latdirection, longdirection,
camMake, camModel, camSerialNumber)
return (default_latitude, default_longitude,
default_latdirection, default_longdirection,
"", "", 0)
def getSpoofedCity(city: str, baseDir: str, nickname: str, domain: str) -> str:
"""Returns the name of the city to use as a GPS spoofing location for
image metadata
"""
cityFilename = baseDir + '/accounts/' + \
nickname + '@' + domain + '/city.txt'
if os.path.isfile(cityFilename):
with open(cityFilename, 'r') as fp:
city = fp.read().replace('\n', '')
return city
def _pointInPolygon(poly: [], x: float, y: float) -> bool:
"""Returns true if the given point is inside the given polygon
"""
n = len(poly)
inside = False
p2x = 0.0
p2y = 0.0
xints = 0.0
p1x, p1y = poly[0]
for i in range(n + 1):
p2x, p2y = poly[i % n]
if y > min(p1y, p2y):
if y <= max(p1y, p2y):
if x <= max(p1x, p2x):
if p1y != p2y:
xints = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
if p1x == p2x or x <= xints:
inside = not inside
p1x, p1y = p2x, p2y
return inside
def pointInNogo(nogo: [], latitude: float, longitude: float) -> bool:
for polygon in nogo:
if _pointInPolygon(polygon, latitude, longitude):
return True
return False