2021-05-10 18:53:20 +00:00
|
|
|
__filename__ = "city.py"
|
|
|
|
__author__ = "Bob Mottram"
|
|
|
|
__license__ = "AGPL3+"
|
|
|
|
__version__ = "1.2.0"
|
|
|
|
__maintainer__ = "Bob Mottram"
|
|
|
|
__email__ = "bob@freedombone.net"
|
|
|
|
__status__ = "Production"
|
|
|
|
|
|
|
|
import os
|
|
|
|
import datetime
|
|
|
|
import random
|
|
|
|
import math
|
|
|
|
from random import randint
|
|
|
|
|
2021-05-10 19:13:46 +00:00
|
|
|
# states which the simulated city dweller can be in
|
2021-05-10 19:12:42 +00:00
|
|
|
PERSON_SLEEP = 0
|
|
|
|
PERSON_WORK = 1
|
|
|
|
PERSON_PLAY = 2
|
|
|
|
PERSON_SHOP = 3
|
|
|
|
PERSON_EVENING = 4
|
|
|
|
PERSON_PARTY = 5
|
|
|
|
|
2021-05-10 18:53:20 +00:00
|
|
|
|
|
|
|
def _getCityPulse(currTimeOfDay, decoySeed: int) -> (float, float):
|
2021-05-10 19:12:42 +00:00
|
|
|
"""This simulates expected average patterns of movement in a city.
|
2021-05-10 18:53:20 +00:00
|
|
|
Jane or Joe average lives and works in the city, commuting in
|
|
|
|
and out of the central district for work. They have a unique
|
|
|
|
life pattern, which machine learning can latch onto.
|
2021-05-10 19:13:46 +00:00
|
|
|
This returns a polar coordinate for the simulated city dweller:
|
2021-05-10 18:53:20 +00:00
|
|
|
Distance from the city centre is in the range 0.0 - 1.0
|
|
|
|
Angle is in radians
|
|
|
|
"""
|
|
|
|
randgen = random.Random(decoySeed)
|
|
|
|
variance = 3
|
2021-05-10 19:12:42 +00:00
|
|
|
busyStates = (PERSON_WORK, PERSON_SHOP, PERSON_PLAY, PERSON_PARTY)
|
|
|
|
dataDecoyState = PERSON_SLEEP
|
2021-05-10 18:53:20 +00:00
|
|
|
weekday = currTimeOfDay.weekday()
|
|
|
|
minHour = 7 + randint(0, variance)
|
|
|
|
maxHour = 17 + randint(0, variance)
|
|
|
|
if currTimeOfDay.hour > minHour:
|
|
|
|
if currTimeOfDay.hour <= maxHour:
|
|
|
|
if weekday < 5:
|
2021-05-10 19:12:42 +00:00
|
|
|
dataDecoyState = PERSON_WORK
|
2021-05-10 18:53:20 +00:00
|
|
|
elif weekday == 5:
|
2021-05-10 19:12:42 +00:00
|
|
|
dataDecoyState = PERSON_SHOP
|
2021-05-10 18:53:20 +00:00
|
|
|
else:
|
2021-05-10 19:12:42 +00:00
|
|
|
dataDecoyState = PERSON_PLAY
|
2021-05-10 18:53:20 +00:00
|
|
|
else:
|
|
|
|
if weekday < 5:
|
2021-05-10 19:12:42 +00:00
|
|
|
dataDecoyState = PERSON_EVENING
|
2021-05-10 18:53:20 +00:00
|
|
|
else:
|
2021-05-10 19:12:42 +00:00
|
|
|
dataDecoyState = PERSON_PARTY
|
|
|
|
randgen2 = random.Random(decoySeed + dataDecoyState)
|
2021-05-10 18:53:20 +00:00
|
|
|
angleRadians = \
|
|
|
|
(randgen2.randint(0, 100000) / 100000) * 2 * math.pi
|
|
|
|
# some people are quite random, others have more predictable habits
|
|
|
|
decoyRandomness = randgen.randint(1, 3)
|
|
|
|
# occasionally throw in a wildcard to keep the machine learning guessing
|
|
|
|
if randint(0, 100) < decoyRandomness:
|
|
|
|
distanceFromCityCenter = (randint(0, 100000) / 100000)
|
|
|
|
angleRadians = (randint(0, 100000) / 100000) * 2 * math.pi
|
|
|
|
else:
|
|
|
|
# what consitutes the central district is fuzzy
|
|
|
|
centralDistrictFuzz = (randgen.randint(0, 100000) / 100000) * 0.1
|
|
|
|
busyRadius = 0.3 + centralDistrictFuzz
|
|
|
|
if dataDecoyState in busyStates:
|
|
|
|
# if we are busy then we're somewhere in the city center
|
|
|
|
distanceFromCityCenter = \
|
|
|
|
(randgen.randint(0, 100000) / 100000) * busyRadius
|
|
|
|
else:
|
|
|
|
# otherwise we're in the burbs
|
|
|
|
distanceFromCityCenter = busyRadius + \
|
|
|
|
((1.0 - busyRadius) * (randgen.randint(0, 100000) / 100000))
|
|
|
|
return distanceFromCityCenter, angleRadians
|
|
|
|
|
|
|
|
|
|
|
|
def spoofGeolocation(baseDir: str,
|
|
|
|
city: str, currTime, decoySeed: int,
|
|
|
|
citiesList: []) -> (float, float, str, str):
|
|
|
|
"""Given a city and the current time spoofs the location
|
|
|
|
for an image
|
|
|
|
returns latitude, longitude, N/S, E/W
|
|
|
|
"""
|
|
|
|
locationsFilename = baseDir + '/custom_locations.txt'
|
|
|
|
if not os.path.isfile(locationsFilename):
|
|
|
|
locationsFilename = baseDir + '/locations.txt'
|
|
|
|
cityRadius = 0.1
|
|
|
|
variance = 0.001
|
|
|
|
default_latitude = 51.8744
|
|
|
|
default_longitude = 0.368333
|
|
|
|
default_latdirection = 'N'
|
|
|
|
default_longdirection = 'W'
|
|
|
|
|
|
|
|
if citiesList:
|
|
|
|
cities = citiesList
|
|
|
|
else:
|
|
|
|
if not os.path.isfile(locationsFilename):
|
|
|
|
return (default_latitude, default_longitude,
|
|
|
|
default_latdirection, default_longdirection)
|
|
|
|
cities = []
|
|
|
|
with open(locationsFilename, "r") as f:
|
|
|
|
cities = f.readlines()
|
|
|
|
|
|
|
|
city = city.lower()
|
|
|
|
for cityName in cities:
|
|
|
|
if city in cityName.lower():
|
|
|
|
latitude = cityName.split(':')[1]
|
|
|
|
longitude = cityName.split(':')[2]
|
|
|
|
latdirection = 'N'
|
|
|
|
longdirection = 'E'
|
|
|
|
if 'S' in latitude:
|
|
|
|
latdirection = 'S'
|
|
|
|
latitude = latitude.replace('S', '')
|
|
|
|
if 'W' in longitude:
|
|
|
|
longdirection = 'W'
|
|
|
|
longitude = longitude.replace('W', '')
|
|
|
|
latitude = float(latitude)
|
|
|
|
longitude = float(longitude)
|
|
|
|
# get the time of day at the city
|
|
|
|
approxTimeZone = int(longitude / 15.0)
|
|
|
|
if longdirection == 'E':
|
|
|
|
approxTimeZone = -approxTimeZone
|
|
|
|
currTimeAdjusted = currTime - \
|
|
|
|
datetime.timedelta(hours=approxTimeZone)
|
|
|
|
# patterns of activity change in the city over time
|
|
|
|
(distanceFromCityCenter, angleRadians) = \
|
|
|
|
_getCityPulse(currTimeAdjusted, decoySeed)
|
|
|
|
# Get the position within the city, with some randomness added
|
|
|
|
latitude += \
|
|
|
|
distanceFromCityCenter * cityRadius * math.cos(angleRadians)
|
|
|
|
# add a small amount of variance around the location
|
|
|
|
fraction = randint(0, 100000) / 100000
|
|
|
|
latitude += (fraction * fraction * variance) - (variance / 2.0)
|
|
|
|
|
|
|
|
longitude += \
|
|
|
|
distanceFromCityCenter * cityRadius * math.sin(angleRadians)
|
|
|
|
# add a small amount of variance around the location
|
|
|
|
fraction = randint(0, 100000) / 100000
|
|
|
|
longitude += (fraction * fraction * variance) - (variance / 2.0)
|
|
|
|
|
|
|
|
# gps locations aren't transcendental, so round to a fixed
|
|
|
|
# number of decimal places
|
|
|
|
latitude = int(latitude * 10000) / 10000.0
|
|
|
|
longitude = int(longitude * 10000) / 10000.0
|
|
|
|
return latitude, longitude, latdirection, longdirection
|
|
|
|
|
|
|
|
return (default_latitude, default_longitude,
|
|
|
|
default_latdirection, default_longdirection)
|