cosmopolitan/libc/math/expl.c

129 lines
3.5 KiB
C

/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Exponential function, long double precision
*
*
* SYNOPSIS:
*
* long double x, y, expl();
*
* y = expl( x );
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* A Pade' form of degree 5/6 is used to approximate exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-10000 50000 1.12e-19 2.81e-20
*
*
* Error amplification in the exponential function can be
* a serious matter. The error propagation involves
* exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
* which shows that a 1 lsb error in representing X produces
* a relative error of X times 1 lsb in the function.
* While the routine gives an accurate result for arguments
* that are exactly represented by a long double precision
* computer number, the result contains amplified roundoff
* error for large arguments not exactly represented.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* exp underflow x < MINLOG 0.0
* exp overflow x > MAXLOG MAXNUM
*
*/
#include "libc/math/libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double expl(long double x)
{
return exp(x);
}
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
static const long double P[3] = {
1.2617719307481059087798E-4L,
3.0299440770744196129956E-2L,
9.9999999999999999991025E-1L,
};
static const long double Q[4] = {
3.0019850513866445504159E-6L,
2.5244834034968410419224E-3L,
2.2726554820815502876593E-1L,
2.0000000000000000000897E0L,
};
static const long double
LN2HI = 6.9314575195312500000000E-1L,
LN2LO = 1.4286068203094172321215E-6L,
LOG2E = 1.4426950408889634073599E0L;
long double expl(long double x)
{
long double px, xx;
int k;
if (isnan(x))
return x;
if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
return x * 0x1p16383L;
if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
return -0x1p-16445L/x;
/* Express e**x = e**f 2**k
* = e**(f + k ln(2))
*/
px = floorl(LOG2E * x + 0.5);
k = px;
x -= px * LN2HI;
x -= px * LN2LO;
/* rational approximation of the fractional part:
* e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
*/
xx = x * x;
px = x * __polevll(xx, P, 2);
x = px/(__polevll(xx, Q, 3) - px);
x = 1.0 + 2.0 * x;
return scalbnl(x, k);
}
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
// TODO: broken implementation to make things compile
long double expl(long double x)
{
return exp(x);
}
#endif