/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Exponential function, long double precision * * * SYNOPSIS: * * long double x, y, expl(); * * y = expl( x ); * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * A Pade' form of degree 5/6 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-10000 50000 1.12e-19 2.81e-20 * * * Error amplification in the exponential function can be * a serious matter. The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a long double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < MINLOG 0.0 * exp overflow x > MAXLOG MAXNUM * */ #include "libc/math/libm.h" #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 long double expl(long double x) { return exp(x); } #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 static const long double P[3] = { 1.2617719307481059087798E-4L, 3.0299440770744196129956E-2L, 9.9999999999999999991025E-1L, }; static const long double Q[4] = { 3.0019850513866445504159E-6L, 2.5244834034968410419224E-3L, 2.2726554820815502876593E-1L, 2.0000000000000000000897E0L, }; static const long double LN2HI = 6.9314575195312500000000E-1L, LN2LO = 1.4286068203094172321215E-6L, LOG2E = 1.4426950408889634073599E0L; long double expl(long double x) { long double px, xx; int k; if (isnan(x)) return x; if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */ return x * 0x1p16383L; if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */ return -0x1p-16445L/x; /* Express e**x = e**f 2**k * = e**(f + k ln(2)) */ px = floorl(LOG2E * x + 0.5); k = px; x -= px * LN2HI; x -= px * LN2LO; /* rational approximation of the fractional part: * e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2)) */ xx = x * x; px = x * __polevll(xx, P, 2); x = px/(__polevll(xx, Q, 3) - px); x = 1.0 + 2.0 * x; return scalbnl(x, k); } #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 // TODO: broken implementation to make things compile long double expl(long double x) { return exp(x); } #endif