76 lines
2.8 KiB
C
76 lines
2.8 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
|
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
|
│ Copyright 2020 Justine Alexandra Roberts Tunney │
|
|
│ │
|
|
│ This program is free software; you can redistribute it and/or modify │
|
|
│ it under the terms of the GNU General Public License as published by │
|
|
│ the Free Software Foundation; version 2 of the License. │
|
|
│ │
|
|
│ This program is distributed in the hope that it will be useful, but │
|
|
│ WITHOUT ANY WARRANTY; without even the implied warranty of │
|
|
│ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │
|
|
│ General Public License for more details. │
|
|
│ │
|
|
│ You should have received a copy of the GNU General Public License │
|
|
│ along with this program; if not, write to the Free Software │
|
|
│ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │
|
|
│ 02110-1301 USA │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "libc/bits/hilbert.h"
|
|
|
|
static axdx_t RotateQuadrant(long n, long y, long x, long ry, long rx) {
|
|
long t;
|
|
if (ry == 0) {
|
|
if (rx == 1) {
|
|
y = n - 1 - y;
|
|
x = n - 1 - x;
|
|
}
|
|
t = x;
|
|
x = y;
|
|
y = t;
|
|
}
|
|
return (axdx_t){y, x};
|
|
}
|
|
|
|
/**
|
|
* Generates Hilbert space-filling curve.
|
|
*
|
|
* @see morton()
|
|
*/
|
|
long hilbert(long n, long y, long x) {
|
|
axdx_t m;
|
|
long d, s, ry, rx;
|
|
d = 0;
|
|
for (s = n / 2; s > 0; s /= 2) {
|
|
rx = (x & s) > 0;
|
|
ry = (y & s) > 0;
|
|
d += s * s * ((3 * rx) ^ ry);
|
|
m = RotateQuadrant(n, y, x, ry, rx);
|
|
x = m.dx;
|
|
y = m.ax;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
/**
|
|
* Decodes Hilbert space-filling curve.
|
|
*
|
|
* @see unmorton()
|
|
*/
|
|
axdx_t unhilbert(long n, long i) {
|
|
axdx_t m;
|
|
long s, t, y, x, ry, rx;
|
|
t = i;
|
|
x = y = 0;
|
|
for (s = 1; s < n; s *= 2) {
|
|
rx = (t / 2) & 1;
|
|
ry = (t ^ rx) & 1;
|
|
m = RotateQuadrant(s, y, x, ry, rx);
|
|
x = m.dx + s * rx;
|
|
y = m.ax + s * ry;
|
|
t /= 4;
|
|
}
|
|
return (axdx_t){y, x};
|
|
}
|