cosmopolitan/third_party/regex/regcomp.c

2596 lines
87 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╚──────────────────────────────────────────────────────────────────────────────╝
│ │
│ regcomp.c - TRE POSIX compatible regex compilation functions. │
│ │
│ Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi> │
│ All rights reserved. │
│ │
│ Redistribution and use in source and binary forms, with or without │
│ modification, are permitted provided that the following conditions │
│ are met: │
│ │
│ 1. Redistributions of source code must retain the above copyright │
│ notice, this list of conditions and the following disclaimer. │
│ │
│ 2. Redistributions in binary form must reproduce the above copyright │
│ notice, this list of conditions and the following disclaimer in │
│ the documentation and/or other materials provided with the │
│ distribution. │
│ │
│ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS │
│ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT │
│ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR │
│ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT │
│ HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, │
│ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT │
│ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, │
│ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY │
│ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT │
│ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE │
│ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
│ │
│──────────────────────────────────────────────────────────────────────────────│
│ │
│ Musl Libc │
│ Copyright © 2005-2014 Rich Felker, et al. │
│ │
│ Permission is hereby granted, free of charge, to any person obtaining │
│ a copy of this software and associated documentation files (the │
│ "Software"), to deal in the Software without restriction, including │
│ without limitation the rights to use, copy, modify, merge, publish, │
│ distribute, sublicense, and/or sell copies of the Software, and to │
│ permit persons to whom the Software is furnished to do so, subject to │
│ the following conditions: │
│ │
│ The above copyright notice and this permission notice shall be │
│ included in all copies or substantial portions of the Software. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
│ │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "third_party/regex/tre.inc"
#define CHARCLASS_NAME_MAX 14
#define RE_DUP_MAX 255
/***********************************************************************
from tre-compile.h
***********************************************************************/
typedef struct {
int position;
int code_min;
int code_max;
int *tags;
int assertions;
tre_ctype_t class;
tre_ctype_t *neg_classes;
int backref;
} tre_pos_and_tags_t;
/***********************************************************************
from tre-ast.c and tre-ast.h
***********************************************************************/
/* The different AST node types. */
typedef enum { LITERAL, CATENATION, ITERATION, UNION } tre_ast_type_t;
/* Special subtypes of TRE_LITERAL. */
#define EMPTY -1 /* Empty leaf (denotes empty string). */
#define ASSERTION -2 /* Assertion leaf. */
#define TAG -3 /* Tag leaf. */
#define BACKREF -4 /* Back reference leaf. */
#define IS_SPECIAL(x) ((x)->code_min < 0)
#define IS_EMPTY(x) ((x)->code_min == EMPTY)
#define IS_ASSERTION(x) ((x)->code_min == ASSERTION)
#define IS_TAG(x) ((x)->code_min == TAG)
#define IS_BACKREF(x) ((x)->code_min == BACKREF)
/* A generic AST node. All AST nodes consist of this node on the top
level with `obj' pointing to the actual content. */
typedef struct {
tre_ast_type_t type; /* Type of the node. */
void *obj; /* Pointer to actual node. */
int nullable;
int submatch_id;
int num_submatches;
int num_tags;
tre_pos_and_tags_t *firstpos;
tre_pos_and_tags_t *lastpos;
} tre_ast_node_t;
/* A "literal" node. These are created for assertions, back references,
tags, matching parameter settings, and all expressions that match one
character. */
typedef struct {
long code_min;
long code_max;
int position;
tre_ctype_t class;
tre_ctype_t *neg_classes;
} tre_literal_t;
/* A "catenation" node. These are created when two regexps are concatenated.
If there are more than one subexpressions in sequence, the `left' part
holds all but the last, and `right' part holds the last subexpression
(catenation is left associative). */
typedef struct {
tre_ast_node_t *left;
tre_ast_node_t *right;
} tre_catenation_t;
/* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}"
operators. */
typedef struct {
/* Subexpression to match. */
tre_ast_node_t *arg;
/* Minimum number of consecutive matches. */
int min;
/* Maximum number of consecutive matches. */
int max;
/* If 0, match as many characters as possible, if 1 match as few as
possible. Note that this does not always mean the same thing as
matching as many/few repetitions as possible. */
unsigned int minimal : 1;
} tre_iteration_t;
/* An "union" node. These are created for the "|" operator. */
typedef struct {
tre_ast_node_t *left;
tre_ast_node_t *right;
} tre_union_t;
static tre_ast_node_t *tre_ast_new_node(tre_mem_t mem, int type, void *obj) {
tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node);
if (!node || !obj) return 0;
node->obj = obj;
node->type = type;
node->nullable = -1;
node->submatch_id = -1;
return node;
}
static tre_ast_node_t *tre_ast_new_literal(tre_mem_t mem, int code_min,
int code_max, int position) {
tre_ast_node_t *node;
tre_literal_t *lit;
lit = tre_mem_calloc(mem, sizeof *lit);
node = tre_ast_new_node(mem, LITERAL, lit);
if (!node) return 0;
lit->code_min = code_min;
lit->code_max = code_max;
lit->position = position;
return node;
}
static tre_ast_node_t *tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg,
int min, int max, int minimal) {
tre_ast_node_t *node;
tre_iteration_t *iter;
iter = tre_mem_calloc(mem, sizeof *iter);
node = tre_ast_new_node(mem, ITERATION, iter);
if (!node) return 0;
iter->arg = arg;
iter->min = min;
iter->max = max;
iter->minimal = minimal;
node->num_submatches = arg->num_submatches;
return node;
}
static tre_ast_node_t *tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left,
tre_ast_node_t *right) {
tre_ast_node_t *node;
tre_union_t *un;
if (!left) return right;
un = tre_mem_calloc(mem, sizeof *un);
node = tre_ast_new_node(mem, UNION, un);
if (!node || !right) return 0;
un->left = left;
un->right = right;
node->num_submatches = left->num_submatches + right->num_submatches;
return node;
}
static tre_ast_node_t *tre_ast_new_catenation(tre_mem_t mem,
tre_ast_node_t *left,
tre_ast_node_t *right) {
tre_ast_node_t *node;
tre_catenation_t *cat;
if (!left) return right;
cat = tre_mem_calloc(mem, sizeof *cat);
node = tre_ast_new_node(mem, CATENATION, cat);
if (!node) return 0;
cat->left = left;
cat->right = right;
node->num_submatches = left->num_submatches + right->num_submatches;
return node;
}
/***********************************************************************
from tre-stack.c and tre-stack.h
***********************************************************************/
typedef struct tre_stack_rec tre_stack_t;
/* Creates a new stack object. `size' is initial size in bytes, `max_size'
is maximum size, and `increment' specifies how much more space will be
allocated with realloc() if all space gets used up. Returns the stack
object or NULL if out of memory. */
static tre_stack_t *tre_stack_new(int size, int max_size, int increment);
/* Frees the stack object. */
static void tre_stack_destroy(tre_stack_t *s);
/* Returns the current number of objects in the stack. */
static int tre_stack_num_objects(tre_stack_t *s);
/* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes
`value' on top of stack `s'. Returns REG_ESPACE if out of memory.
This tries to realloc() more space before failing if maximum size
has not yet been reached. Returns REG_OK if successful. */
#define declare_pushf(typetag, type) \
static reg_errcode_t tre_stack_push_##typetag(tre_stack_t *s, type value)
declare_pushf(voidptr, void *);
declare_pushf(int, int);
/* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost
element off of stack `s' and returns it. The stack must not be
empty. */
#define declare_popf(typetag, type) \
static type tre_stack_pop_##typetag(tre_stack_t *s)
declare_popf(voidptr, void *);
declare_popf(int, int);
/* Just to save some typing. */
#define STACK_PUSH(s, typetag, value) \
do { \
status = tre_stack_push_##typetag(s, value); \
} while (/*CONSTCOND*/ 0)
#define STACK_PUSHX(s, typetag, value) \
{ \
status = tre_stack_push_##typetag(s, value); \
if (status != REG_OK) break; \
}
#define STACK_PUSHR(s, typetag, value) \
{ \
reg_errcode_t _status; \
_status = tre_stack_push_##typetag(s, value); \
if (_status != REG_OK) return _status; \
}
union tre_stack_item {
void *voidptr_value;
int int_value;
};
struct tre_stack_rec {
int size;
int max_size;
int increment;
int ptr;
union tre_stack_item *stack;
};
static tre_stack_t *tre_stack_new(int size, int max_size, int increment) {
tre_stack_t *s;
s = malloc(sizeof(*s));
if (s != NULL) {
s->stack = malloc(sizeof(*s->stack) * size);
if (s->stack == NULL) {
free(s), s = NULL;
return NULL;
}
s->size = size;
s->max_size = max_size;
s->increment = increment;
s->ptr = 0;
}
return s;
}
static void tre_stack_destroy(tre_stack_t *s) {
free(s->stack), s->stack = NULL;
free(s), s = NULL;
}
static int tre_stack_num_objects(tre_stack_t *s) { return s->ptr; }
static reg_errcode_t tre_stack_push(tre_stack_t *s,
union tre_stack_item value) {
if (s->ptr < s->size) {
s->stack[s->ptr] = value;
s->ptr++;
} else {
if (s->size >= s->max_size) {
return REG_ESPACE;
} else {
union tre_stack_item *new_buffer;
int new_size;
new_size = s->size + s->increment;
if (new_size > s->max_size) new_size = s->max_size;
new_buffer = realloc(s->stack, sizeof(*new_buffer) * new_size);
if (new_buffer == NULL) {
return REG_ESPACE;
}
assert(new_size > s->size);
s->size = new_size;
s->stack = new_buffer;
tre_stack_push(s, value);
}
}
return REG_OK;
}
#define define_pushf(typetag, type) \
declare_pushf(typetag, type) { \
union tre_stack_item item; \
item.typetag##_value = value; \
return tre_stack_push(s, item); \
}
define_pushf(int, int) define_pushf(voidptr, void *)
#define define_popf(typetag, type) \
declare_popf(typetag, type) { return s->stack[--s->ptr].typetag##_value; }
define_popf(int, int) define_popf(voidptr, void *)
/***********************************************************************
from tre-parse.c and tre-parse.h
***********************************************************************/
/* Parse context. */
typedef struct {
/* Memory allocator. The AST is allocated using this. */
tre_mem_t mem;
/* Stack used for keeping track of regexp syntax. */
tre_stack_t *stack;
/* The parsed node after a parse function returns. */
tre_ast_node_t *n;
/* Position in the regexp pattern after a parse function returns. */
const char *s;
/* The first character of the last subexpression parsed. */
const char *start;
/* Current submatch ID. */
int submatch_id;
/* Current position (number of literal). */
int position;
/* The highest back reference or -1 if none seen so far. */
int max_backref;
/* Compilation flags. */
int cflags;
} tre_parse_ctx_t;
/* Some macros for expanding \w, \s, etc. */
static const struct {
char c;
const char *expansion;
} tre_macros[] = {{'t', "\t"},
{'n', "\n"},
{'r', "\r"},
{'f', "\f"},
{'a', "\a"},
{'e', "\033"},
{'w', "[[:alnum:]_]"},
{'W', "[^[:alnum:]_]"},
{'s', "[[:space:]]"},
{'S', "[^[:space:]]"},
{'d', "[[:digit:]]"},
{'D', "[^[:digit:]]"},
{0, 0}};
/* Expands a macro delimited by `regex' and `regex_end' to `buf', which
must have at least `len' items. Sets buf[0] to zero if the there
is no match in `tre_macros'. */
static const char *tre_expand_macro(const char *s) {
int i;
for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++)
;
return tre_macros[i].expansion;
}
static int tre_compare_lit(const void *a, const void *b) {
const tre_literal_t *const *la = a;
const tre_literal_t *const *lb = b;
/* assumes the range of valid code_min is < INT_MAX */
return la[0]->code_min - lb[0]->code_min;
}
struct literals {
tre_mem_t mem;
tre_literal_t **a;
int len;
int cap;
};
static tre_literal_t *tre_new_lit(struct literals *p) {
tre_literal_t **a;
if (p->len >= p->cap) {
if (p->cap >= 1 << 15) return 0;
p->cap *= 2;
a = realloc(p->a, p->cap * sizeof *p->a);
if (!a) return 0;
p->a = a;
}
a = p->a + p->len++;
*a = tre_mem_calloc(p->mem, sizeof **a);
return *a;
}
static int add_icase_literals(struct literals *ls, int min, int max) {
tre_literal_t *lit;
int b, e, c;
for (c = min; c <= max;) {
/* assumes islower(c) and isupper(c) are exclusive
and toupper(c)!=c if islower(c).
multiple opposite case characters are not supported */
if (tre_islower(c)) {
b = e = tre_toupper(c);
for (c++, e++; c <= max; c++, e++)
if (tre_toupper(c) != e) break;
} else if (tre_isupper(c)) {
b = e = tre_tolower(c);
for (c++, e++; c <= max; c++, e++)
if (tre_tolower(c) != e) break;
} else {
c++;
continue;
}
lit = tre_new_lit(ls);
if (!lit) return -1;
lit->code_min = b;
lit->code_max = e - 1;
lit->position = -1;
}
return 0;
}
/* Maximum number of character classes in a negated bracket expression. */
#define MAX_NEG_CLASSES 64
struct neg {
int negate;
int len;
tre_ctype_t a[MAX_NEG_CLASSES];
};
// TODO: parse bracket into a set of non-overlapping [lo,hi] ranges
/*
bracket grammar:
Bracket = '[' List ']' | '[^' List ']'
List = Term | List Term
Term = Char | Range | Chclass | Eqclass
Range = Char '-' Char | Char '-' '-'
Char = Coll | coll_single
Meta = ']' | '-'
Coll = '[.' coll_single '.]' | '[.' coll_multi '.]' | '[.' Meta '.]'
Eqclass = '[=' coll_single '=]' | '[=' coll_multi '=]'
Chclass = '[:' class ':]'
coll_single is a single char collating element but it can be
'-' only at the beginning or end of a List and
']' only at the beginning of a List and
'^' anywhere except after the openning '['
*/
static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s,
struct literals *ls, struct neg *neg) {
const char *start = s;
tre_ctype_t class;
int min, max;
wchar_t wc;
int len;
for (;;) {
class = 0;
len = mbtowc(&wc, s, -1);
if (len <= 0) return *s ? REG_BADPAT : REG_EBRACK;
if (*s == ']' && s != start) {
ctx->s = s + 1;
return REG_OK;
}
if (*s == '-' && s != start && s[1] != ']' &&
/* extension: [a-z--@] is accepted as [a-z]|[--@] */
(s[1] != '-' || s[2] == ']'))
return REG_ERANGE;
if (*s == '[' && (s[1] == '.' || s[1] == '='))
/* collating symbols and equivalence classes are not supported */
return REG_ECOLLATE;
if (*s == '[' && s[1] == ':') {
char tmp[CHARCLASS_NAME_MAX + 1];
s += 2;
for (len = 0; len < CHARCLASS_NAME_MAX && s[len]; len++) {
if (s[len] == ':') {
memcpy(tmp, s, len);
tmp[len] = 0;
class = tre_ctype(tmp);
break;
}
}
if (!class || s[len + 1] != ']') return REG_ECTYPE;
min = 0;
max = TRE_CHAR_MAX;
s += len + 2;
} else {
min = max = wc;
s += len;
if (*s == '-' && s[1] != ']') {
s++;
len = mbtowc(&wc, s, -1);
max = wc;
/* XXX - Should use collation order instead of
encoding values in character ranges. */
if (len <= 0 || min > max) return REG_ERANGE;
s += len;
}
}
if (class && neg->negate) {
if (neg->len >= MAX_NEG_CLASSES) return REG_ESPACE;
neg->a[neg->len++] = class;
} else {
tre_literal_t *lit = tre_new_lit(ls);
if (!lit) return REG_ESPACE;
lit->code_min = min;
lit->code_max = max;
lit->class = class;
lit->position = -1;
/* Add opposite-case codepoints if REG_ICASE is present.
It seems that POSIX requires that bracket negation
should happen before case-folding, but most practical
implementations do it the other way around. Changing
the order would need efficient representation of
case-fold ranges and bracket range sets even with
simple patterns so this is ok for now. */
if (ctx->cflags & REG_ICASE && !class)
if (add_icase_literals(ls, min, max)) return REG_ESPACE;
}
}
}
static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s) {
int i, max, min, negmax, negmin;
tre_ast_node_t *node = 0, *n;
tre_ctype_t *nc = 0;
tre_literal_t *lit;
struct literals ls;
struct neg neg;
reg_errcode_t err;
ls.mem = ctx->mem;
ls.len = 0;
ls.cap = 32;
ls.a = malloc(ls.cap * sizeof *ls.a);
if (!ls.a) return REG_ESPACE;
neg.len = 0;
neg.negate = *s == '^';
if (neg.negate) s++;
err = parse_bracket_terms(ctx, s, &ls, &neg);
if (err != REG_OK) goto parse_bracket_done;
if (neg.negate) {
/*
* With REG_NEWLINE, POSIX requires that newlines are not matched by
* any form of a non-matching list.
*/
if (ctx->cflags & REG_NEWLINE) {
lit = tre_new_lit(&ls);
if (!lit) {
err = REG_ESPACE;
goto parse_bracket_done;
}
lit->code_min = '\n';
lit->code_max = '\n';
lit->position = -1;
}
/* Sort the array if we need to negate it. */
qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit);
/* extra lit for the last negated range */
lit = tre_new_lit(&ls);
if (!lit) {
err = REG_ESPACE;
goto parse_bracket_done;
}
lit->code_min = TRE_CHAR_MAX + 1;
lit->code_max = TRE_CHAR_MAX + 1;
lit->position = -1;
/* negated classes */
if (neg.len) {
nc = tre_mem_alloc(ctx->mem, (neg.len + 1) * sizeof *neg.a);
if (!nc) {
err = REG_ESPACE;
goto parse_bracket_done;
}
memcpy(nc, neg.a, neg.len * sizeof *neg.a);
nc[neg.len] = 0;
}
}
/* Build a union of the items in the array, negated if necessary. */
negmax = negmin = 0;
for (i = 0; i < ls.len; i++) {
lit = ls.a[i];
min = lit->code_min;
max = lit->code_max;
if (neg.negate) {
if (min <= negmin) {
/* Overlap. */
negmin = MAX(max + 1, negmin);
continue;
}
negmax = min - 1;
lit->code_min = negmin;
lit->code_max = negmax;
negmin = max + 1;
}
lit->position = ctx->position;
lit->neg_classes = nc;
n = tre_ast_new_node(ctx->mem, LITERAL, lit);
node = tre_ast_new_union(ctx->mem, node, n);
if (!node) {
err = REG_ESPACE;
break;
}
}
parse_bracket_done:
free(ls.a), ls.a = NULL;
ctx->position++;
ctx->n = node;
return err;
}
static const char *parse_dup_count(const char *s, int *n) {
*n = -1;
if (!isdigit(*s)) return s;
*n = 0;
for (;;) {
*n = 10 * *n + (*s - '0');
s++;
if (!isdigit(*s) || *n > RE_DUP_MAX) break;
}
return s;
}
static const char *parse_dup(const char *s, int ere, int *pmin, int *pmax) {
int min, max;
s = parse_dup_count(s, &min);
if (*s == ',')
s = parse_dup_count(s + 1, &max);
else
max = min;
if ((max < min && max >= 0) || max > RE_DUP_MAX || min > RE_DUP_MAX ||
min < 0 || (!ere && *s++ != '\\') || *s++ != '}')
return 0;
*pmin = min;
*pmax = max;
return s;
}
static int hexval(unsigned c) {
if (c - '0' < 10) return c - '0';
c |= 32;
if (c - 'a' < 6) return c - 'a' + 10;
return -1;
}
static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node,
int subid) {
if (node->submatch_id >= 0) {
tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
if (!n) return REG_ESPACE;
n = tre_ast_new_catenation(ctx->mem, n, node);
if (!n) return REG_ESPACE;
n->num_submatches = node->num_submatches;
node = n;
}
node->submatch_id = subid;
node->num_submatches++;
ctx->n = node;
return REG_OK;
}
/*
BRE grammar:
Regex = Branch | '^' | '$' | '^$' | '^' Branch | Branch '$' | '^'
Branch '$' Branch = Atom | Branch Atom Atom = char | quoted_char | '.'
| Bracket | Atom Dup | '\(' Branch '\)' | back_ref Dup = '*' | '\{'
Count '\}' | '\{' Count ',\}' | '\{' Count ',' Count '\}'
(leading ^ and trailing $ in a sub expr may be an anchor or literal as well)
ERE grammar:
Regex = Branch | Regex '|' Branch
Branch = Atom | Branch Atom
Atom = char | quoted_char | '.' | Bracket | Atom Dup | '(' Regex
')' | '^' | '$' Dup = '*' | '+' | '?' | '{' Count '}' | '{'
Count ',}' | '{' Count ',' Count '}'
(a*+?, ^*, $+, \X, {, (|a) are unspecified)
*/
static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s) {
int len, ere = ctx->cflags & REG_EXTENDED;
const char *p;
tre_ast_node_t *node;
wchar_t wc;
switch (*s) {
case '[':
return parse_bracket(ctx, s + 1);
case '\\':
p = tre_expand_macro(s + 1);
if (p) {
/* assume \X expansion is a single atom */
reg_errcode_t err = parse_atom(ctx, p);
ctx->s = s + 2;
return err;
}
/* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */
switch (*++s) {
case 0:
return REG_EESCAPE;
case 'b':
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1);
break;
case 'B':
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1);
break;
case '<':
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1);
break;
case '>':
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1);
break;
case 'x':
s++;
int i, v = 0, c;
len = 2;
if (*s == '{') {
len = 8;
s++;
}
for (i = 0; i < len && v < 0x110000; i++) {
c = hexval(s[i]);
if (c < 0) break;
v = 16 * v + c;
}
s += i;
if (len == 8) {
if (*s != '}') return REG_EBRACE;
s++;
}
node = tre_ast_new_literal(ctx->mem, v, v, ctx->position++);
s--;
break;
case '{':
case '+':
case '?':
/* extension: treat \+, \? as repetitions in BRE */
/* reject repetitions after empty expression in BRE */
if (!ere) return REG_BADRPT;
/* fallthrough */
case '|':
/* extension: treat \| as alternation in BRE */
if (!ere) {
node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
s--;
goto end;
}
/* fallthrough */
default:
if (!ere && (unsigned)*s - '1' < 9) {
/* back reference */
int val = *s - '0';
node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position++);
ctx->max_backref = MAX(val, ctx->max_backref);
} else {
/* extension: accept unknown escaped char
as a literal */
goto parse_literal;
}
}
s++;
break;
case '.':
if (ctx->cflags & REG_NEWLINE) {
tre_ast_node_t *tmp1, *tmp2;
tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n' - 1, ctx->position++);
tmp2 = tre_ast_new_literal(ctx->mem, '\n' + 1, TRE_CHAR_MAX,
ctx->position++);
if (tmp1 && tmp2)
node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
else
node = 0;
} else {
node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++);
}
s++;
break;
case '^':
/* '^' has a special meaning everywhere in EREs, and at beginning of BRE.
*/
if (!ere && s != ctx->start) goto parse_literal;
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1);
s++;
break;
case '$':
/* '$' is special everywhere in EREs, and at the end of a BRE
* subexpression. */
if (!ere && s[1] && (s[1] != '\\' || (s[2] != ')' && s[2] != '|')))
goto parse_literal;
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1);
s++;
break;
case '*':
case '{':
case '+':
case '?':
/* reject repetitions after empty expression in ERE */
if (ere) return REG_BADRPT;
/* fallthrough */
case '|':
if (!ere) goto parse_literal;
/* fallthrough */
case 0:
node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
break;
default:
parse_literal:
len = mbtowc(&wc, s, -1);
if (len < 0) return REG_BADPAT;
if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) {
tre_ast_node_t *tmp1, *tmp2;
/* multiple opposite case characters are not supported */
tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(wc),
ctx->position);
tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(wc),
ctx->position);
if (tmp1 && tmp2)
node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
else
node = 0;
} else {
node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position);
}
ctx->position++;
s += len;
break;
}
end:
if (!node) return REG_ESPACE;
ctx->n = node;
ctx->s = s;
return REG_OK;
}
#define PUSHPTR(err, s, v) \
do { \
if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) return err; \
} while (0)
#define PUSHINT(err, s, v) \
do { \
if ((err = tre_stack_push_int(s, v)) != REG_OK) return err; \
} while (0)
static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx) {
tre_ast_node_t *nbranch = 0, *nunion = 0;
int ere = ctx->cflags & REG_EXTENDED;
const char *s = ctx->start;
int subid = 0;
int depth = 0;
reg_errcode_t err;
tre_stack_t *stack = ctx->stack;
PUSHINT(err, stack, subid++);
for (;;) {
if ((!ere && *s == '\\' && s[1] == '(') || (ere && *s == '(')) {
PUSHPTR(err, stack, nunion);
PUSHPTR(err, stack, nbranch);
PUSHINT(err, stack, subid++);
s++;
if (!ere) s++;
depth++;
nbranch = nunion = 0;
ctx->start = s;
continue;
}
if ((!ere && *s == '\\' && s[1] == ')') || (ere && *s == ')' && depth)) {
ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
if (!ctx->n) return REG_ESPACE;
} else {
err = parse_atom(ctx, s);
if (err != REG_OK) return err;
s = ctx->s;
}
parse_iter:
for (;;) {
int min, max;
if (*s != '\\' && *s != '*') {
if (!ere) break;
if (*s != '+' && *s != '?' && *s != '{') break;
}
if (*s == '\\' && ere) break;
/* extension: treat \+, \? as repetitions in BRE */
if (*s == '\\' && s[1] != '+' && s[1] != '?' && s[1] != '{') break;
if (*s == '\\') s++;
/* handle ^* at the start of a BRE. */
if (!ere && s == ctx->start + 1 && s[-1] == '^') break;
/* extension: multiple consecutive *+?{,} is unspecified,
but (a+)+ has to be supported so accepting a++ makes
sense, note however that the RE_DUP_MAX limit can be
circumvented: (a{255}){255} uses a lot of memory.. */
if (*s == '{') {
s = parse_dup(s + 1, ere, &min, &max);
if (!s) return REG_BADBR;
} else {
min = 0;
max = -1;
if (*s == '+') min = 1;
if (*s == '?') max = 1;
s++;
}
if (max == 0)
ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
else
ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
if (!ctx->n) return REG_ESPACE;
}
nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n);
if ((ere && *s == '|') || (ere && *s == ')' && depth) ||
(!ere && *s == '\\' && s[1] == ')') ||
/* extension: treat \| as alternation in BRE */
(!ere && *s == '\\' && s[1] == '|') || !*s) {
/* extension: empty branch is unspecified (), (|a), (a|)
here they are not rejected but match on empty string */
int c = *s;
nunion = tre_ast_new_union(ctx->mem, nunion, nbranch);
nbranch = 0;
if (c == '\\' && s[1] == '|') {
s += 2;
ctx->start = s;
} else if (c == '|') {
s++;
ctx->start = s;
} else {
if (c == '\\') {
if (!depth) return REG_EPAREN;
s += 2;
} else if (c == ')')
s++;
depth--;
err = marksub(ctx, nunion, tre_stack_pop_int(stack));
if (err != REG_OK) return err;
if (!c && depth < 0) {
ctx->submatch_id = subid;
return REG_OK;
}
if (!c || depth < 0) return REG_EPAREN;
nbranch = tre_stack_pop_voidptr(stack);
nunion = tre_stack_pop_voidptr(stack);
goto parse_iter;
}
}
}
}
/***********************************************************************
from tre-compile.c
***********************************************************************/
/*
TODO:
- Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive
function calls.
*/
/*
Algorithms to setup tags so that submatch addressing can be done.
*/
/* Inserts a catenation node to the root of the tree given in `node'.
As the left child a new tag with number `tag_id' to `node' is added,
and the right child is the old root. */
static reg_errcode_t tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node,
int tag_id) {
tre_catenation_t *c;
c = tre_mem_alloc(mem, sizeof(*c));
if (c == NULL) return REG_ESPACE;
c->left = tre_ast_new_literal(mem, TAG, tag_id, -1);
if (c->left == NULL) return REG_ESPACE;
c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
if (c->right == NULL) return REG_ESPACE;
c->right->obj = node->obj;
c->right->type = node->type;
c->right->nullable = -1;
c->right->submatch_id = -1;
c->right->firstpos = NULL;
c->right->lastpos = NULL;
c->right->num_tags = 0;
c->right->num_submatches = 0;
node->obj = c;
node->type = CATENATION;
return REG_OK;
}
/* Inserts a catenation node to the root of the tree given in `node'.
As the right child a new tag with number `tag_id' to `node' is added,
and the left child is the old root. */
static reg_errcode_t tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node,
int tag_id) {
tre_catenation_t *c;
c = tre_mem_alloc(mem, sizeof(*c));
if (c == NULL) return REG_ESPACE;
c->right = tre_ast_new_literal(mem, TAG, tag_id, -1);
if (c->right == NULL) return REG_ESPACE;
c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
if (c->left == NULL) return REG_ESPACE;
c->left->obj = node->obj;
c->left->type = node->type;
c->left->nullable = -1;
c->left->submatch_id = -1;
c->left->firstpos = NULL;
c->left->lastpos = NULL;
c->left->num_tags = 0;
c->left->num_submatches = 0;
node->obj = c;
node->type = CATENATION;
return REG_OK;
}
typedef enum {
ADDTAGS_RECURSE,
ADDTAGS_AFTER_ITERATION,
ADDTAGS_AFTER_UNION_LEFT,
ADDTAGS_AFTER_UNION_RIGHT,
ADDTAGS_AFTER_CAT_LEFT,
ADDTAGS_AFTER_CAT_RIGHT,
ADDTAGS_SET_SUBMATCH_END
} tre_addtags_symbol_t;
typedef struct {
int tag;
int next_tag;
} tre_tag_states_t;
/* Go through `regset' and set submatch data for submatches that are
using this tag. */
static void tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag) {
int i;
for (i = 0; regset[i] >= 0; i++) {
int id = regset[i] / 2;
int start = !(regset[i] % 2);
if (start)
tnfa->submatch_data[id].so_tag = tag;
else
tnfa->submatch_data[id].eo_tag = tag;
}
regset[0] = -1;
}
/* Adds tags to appropriate locations in the parse tree in `tree', so that
subexpressions marked for submatch addressing can be traced. */
static reg_errcode_t tre_add_tags(tre_mem_t mem, tre_stack_t *stack,
tre_ast_node_t *tree, tre_tnfa_t *tnfa) {
reg_errcode_t status = REG_OK;
tre_addtags_symbol_t symbol;
tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */
int bottom = tre_stack_num_objects(stack);
/* True for first pass (counting number of needed tags) */
int first_pass = (mem == NULL || tnfa == NULL);
int *regset, *orig_regset;
int num_tags = 0; /* Total number of tags. */
int num_minimals = 0; /* Number of special minimal tags. */
int tag = 0; /* The tag that is to be added next. */
int next_tag = 1; /* Next tag to use after this one. */
int *parents; /* Stack of submatches the current submatch is
contained in. */
int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */
tre_tag_states_t *saved_states;
tre_tag_direction_t direction = TRE_TAG_MINIMIZE;
if (!first_pass) {
tnfa->end_tag = 0;
tnfa->minimal_tags[0] = -1;
}
regset = malloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2));
if (regset == NULL) return REG_ESPACE;
regset[0] = -1;
orig_regset = regset;
parents = malloc(sizeof(*parents) * (tnfa->num_submatches + 1));
if (parents == NULL) {
free(regset), regset = NULL;
return REG_ESPACE;
}
parents[0] = -1;
saved_states = malloc(sizeof(*saved_states) * (tnfa->num_submatches + 1));
if (saved_states == NULL) {
free(regset), regset = NULL;
free(parents), parents = NULL;
return REG_ESPACE;
} else {
unsigned int i;
for (i = 0; i <= tnfa->num_submatches; i++) saved_states[i].tag = -1;
}
STACK_PUSH(stack, voidptr, node);
STACK_PUSH(stack, int, ADDTAGS_RECURSE);
while (tre_stack_num_objects(stack) > bottom) {
if (status != REG_OK) break;
symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
switch (symbol) {
case ADDTAGS_SET_SUBMATCH_END: {
int id = tre_stack_pop_int(stack);
int i;
/* Add end of this submatch to regset. */
for (i = 0; regset[i] >= 0; i++)
;
regset[i] = id * 2 + 1;
regset[i + 1] = -1;
/* Pop this submatch from the parents stack. */
for (i = 0; parents[i] >= 0; i++)
;
parents[i - 1] = -1;
break;
}
case ADDTAGS_RECURSE:
node = tre_stack_pop_voidptr(stack);
if (node->submatch_id >= 0) {
int id = node->submatch_id;
int i;
/* Add start of this submatch to regset. */
for (i = 0; regset[i] >= 0; i++)
;
regset[i] = id * 2;
regset[i + 1] = -1;
if (!first_pass) {
for (i = 0; parents[i] >= 0; i++)
;
tnfa->submatch_data[id].parents = NULL;
if (i > 0) {
int *p = malloc(sizeof(*p) * (i + 1));
if (p == NULL) {
status = REG_ESPACE;
break;
}
assert(tnfa->submatch_data[id].parents == NULL);
tnfa->submatch_data[id].parents = p;
for (i = 0; parents[i] >= 0; i++) p[i] = parents[i];
p[i] = -1;
}
}
/* Add end of this submatch to regset after processing this
node. */
STACK_PUSHX(stack, int, node->submatch_id);
STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
}
switch (node->type) {
case LITERAL: {
tre_literal_t *lit = node->obj;
if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
int i;
if (regset[0] >= 0) {
/* Regset is not empty, so add a tag before the
literal or backref. */
if (!first_pass) {
status = tre_add_tag_left(mem, node, tag);
tnfa->tag_directions[tag] = direction;
if (minimal_tag >= 0) {
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
;
tnfa->minimal_tags[i] = tag;
tnfa->minimal_tags[i + 1] = minimal_tag;
tnfa->minimal_tags[i + 2] = -1;
minimal_tag = -1;
num_minimals++;
}
tre_purge_regset(regset, tnfa, tag);
} else {
node->num_tags = 1;
}
regset[0] = -1;
tag = next_tag;
num_tags++;
next_tag++;
}
} else {
assert(!IS_TAG(lit));
}
break;
}
case CATENATION: {
tre_catenation_t *cat = node->obj;
tre_ast_node_t *left = cat->left;
tre_ast_node_t *right = cat->right;
int reserved_tag = -1;
/* After processing right child. */
STACK_PUSHX(stack, voidptr, node);
STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);
/* Process right child. */
STACK_PUSHX(stack, voidptr, right);
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
/* After processing left child. */
STACK_PUSHX(stack, int, next_tag + left->num_tags);
if (left->num_tags > 0 && right->num_tags > 0) {
/* Reserve the next tag to the right child. */
reserved_tag = next_tag;
next_tag++;
}
STACK_PUSHX(stack, int, reserved_tag);
STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);
/* Process left child. */
STACK_PUSHX(stack, voidptr, left);
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
} break;
case ITERATION: {
tre_iteration_t *iter = node->obj;
if (first_pass) {
STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
} else {
STACK_PUSHX(stack, int, tag);
STACK_PUSHX(stack, int, iter->minimal);
}
STACK_PUSHX(stack, voidptr, node);
STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);
STACK_PUSHX(stack, voidptr, iter->arg);
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
/* Regset is not empty, so add a tag here. */
if (regset[0] >= 0 || iter->minimal) {
if (!first_pass) {
int i;
status = tre_add_tag_left(mem, node, tag);
if (iter->minimal)
tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
else
tnfa->tag_directions[tag] = direction;
if (minimal_tag >= 0) {
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
;
tnfa->minimal_tags[i] = tag;
tnfa->minimal_tags[i + 1] = minimal_tag;
tnfa->minimal_tags[i + 2] = -1;
minimal_tag = -1;
num_minimals++;
}
tre_purge_regset(regset, tnfa, tag);
}
regset[0] = -1;
tag = next_tag;
num_tags++;
next_tag++;
}
direction = TRE_TAG_MINIMIZE;
} break;
case UNION: {
tre_union_t *uni = node->obj;
tre_ast_node_t *left = uni->left;
tre_ast_node_t *right = uni->right;
int left_tag;
int right_tag;
if (regset[0] >= 0) {
left_tag = next_tag;
right_tag = next_tag + 1;
} else {
left_tag = tag;
right_tag = next_tag;
}
/* After processing right child. */
STACK_PUSHX(stack, int, right_tag);
STACK_PUSHX(stack, int, left_tag);
STACK_PUSHX(stack, voidptr, regset);
STACK_PUSHX(stack, int, regset[0] >= 0);
STACK_PUSHX(stack, voidptr, node);
STACK_PUSHX(stack, voidptr, right);
STACK_PUSHX(stack, voidptr, left);
STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);
/* Process right child. */
STACK_PUSHX(stack, voidptr, right);
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
/* After processing left child. */
STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);
/* Process left child. */
STACK_PUSHX(stack, voidptr, left);
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
/* Regset is not empty, so add a tag here. */
if (regset[0] >= 0) {
if (!first_pass) {
int i;
status = tre_add_tag_left(mem, node, tag);
tnfa->tag_directions[tag] = direction;
if (minimal_tag >= 0) {
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
;
tnfa->minimal_tags[i] = tag;
tnfa->minimal_tags[i + 1] = minimal_tag;
tnfa->minimal_tags[i + 2] = -1;
minimal_tag = -1;
num_minimals++;
}
tre_purge_regset(regset, tnfa, tag);
}
regset[0] = -1;
tag = next_tag;
num_tags++;
next_tag++;
}
if (node->num_submatches > 0) {
/* The next two tags are reserved for markers. */
next_tag++;
tag = next_tag;
next_tag++;
}
break;
}
}
if (node->submatch_id >= 0) {
int i;
/* Push this submatch on the parents stack. */
for (i = 0; parents[i] >= 0; i++)
;
parents[i] = node->submatch_id;
parents[i + 1] = -1;
}
break; /* end case: ADDTAGS_RECURSE */
case ADDTAGS_AFTER_ITERATION: {
int minimal = 0;
int enter_tag;
node = tre_stack_pop_voidptr(stack);
if (first_pass) {
node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags +
tre_stack_pop_int(stack);
minimal_tag = -1;
} else {
minimal = tre_stack_pop_int(stack);
enter_tag = tre_stack_pop_int(stack);
if (minimal) minimal_tag = enter_tag;
}
if (!first_pass) {
if (minimal)
direction = TRE_TAG_MINIMIZE;
else
direction = TRE_TAG_MAXIMIZE;
}
break;
}
case ADDTAGS_AFTER_CAT_LEFT: {
int new_tag = tre_stack_pop_int(stack);
next_tag = tre_stack_pop_int(stack);
if (new_tag >= 0) {
tag = new_tag;
}
break;
}
case ADDTAGS_AFTER_CAT_RIGHT:
node = tre_stack_pop_voidptr(stack);
if (first_pass)
node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags +
((tre_catenation_t *)node->obj)->right->num_tags;
break;
case ADDTAGS_AFTER_UNION_LEFT:
/* Lift the bottom of the `regset' array so that when processing
the right operand the items currently in the array are
invisible. The original bottom was saved at ADDTAGS_UNION and
will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */
while (*regset >= 0) regset++;
break;
case ADDTAGS_AFTER_UNION_RIGHT: {
int added_tags, tag_left, tag_right;
tre_ast_node_t *left = tre_stack_pop_voidptr(stack);
tre_ast_node_t *right = tre_stack_pop_voidptr(stack);
node = tre_stack_pop_voidptr(stack);
added_tags = tre_stack_pop_int(stack);
if (first_pass) {
node->num_tags = ((tre_union_t *)node->obj)->left->num_tags +
((tre_union_t *)node->obj)->right->num_tags +
added_tags + ((node->num_submatches > 0) ? 2 : 0);
}
regset = tre_stack_pop_voidptr(stack);
tag_left = tre_stack_pop_int(stack);
tag_right = tre_stack_pop_int(stack);
/* Add tags after both children, the left child gets a smaller
tag than the right child. This guarantees that we prefer
the left child over the right child. */
/* XXX - This is not always necessary (if the children have
tags which must be seen for every match of that child). */
/* XXX - Check if this is the only place where tre_add_tag_right
is used. If so, use tre_add_tag_left (putting the tag before
the child as opposed after the child) and throw away
tre_add_tag_right. */
if (node->num_submatches > 0) {
if (!first_pass) {
status = tre_add_tag_right(mem, left, tag_left);
tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
if (status == REG_OK)
status = tre_add_tag_right(mem, right, tag_right);
tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
}
num_tags += 2;
}
direction = TRE_TAG_MAXIMIZE;
break;
}
default:
assert(0);
break;
} /* end switch(symbol) */
} /* end while(tre_stack_num_objects(stack) > bottom) */
if (!first_pass) tre_purge_regset(regset, tnfa, tag);
if (!first_pass && minimal_tag >= 0) {
int i;
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
;
tnfa->minimal_tags[i] = tag;
tnfa->minimal_tags[i + 1] = minimal_tag;
tnfa->minimal_tags[i + 2] = -1;
minimal_tag = -1;
num_minimals++;
}
assert(tree->num_tags == num_tags);
tnfa->end_tag = num_tags;
tnfa->num_tags = num_tags;
tnfa->num_minimals = num_minimals;
free(orig_regset), orig_regset = NULL;
free(parents), parents = NULL;
free(saved_states), saved_states = NULL;
return status;
}
/*
AST to TNFA compilation routines.
*/
typedef enum { COPY_RECURSE, COPY_SET_RESULT_PTR } tre_copyast_symbol_t;
/* Flags for tre_copy_ast(). */
#define COPY_REMOVE_TAGS 1
#define COPY_MAXIMIZE_FIRST_TAG 2
static reg_errcode_t tre_copy_ast(tre_mem_t mem, tre_stack_t *stack,
tre_ast_node_t *ast, int flags, int *pos_add,
tre_tag_direction_t *tag_directions,
tre_ast_node_t **copy, int *max_pos) {
reg_errcode_t status = REG_OK;
int bottom = tre_stack_num_objects(stack);
int num_copied = 0;
int first_tag = 1;
tre_ast_node_t **result = copy;
tre_copyast_symbol_t symbol;
STACK_PUSH(stack, voidptr, ast);
STACK_PUSH(stack, int, COPY_RECURSE);
while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
tre_ast_node_t *node;
if (status != REG_OK) break;
symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
switch (symbol) {
case COPY_SET_RESULT_PTR:
result = tre_stack_pop_voidptr(stack);
break;
case COPY_RECURSE:
node = tre_stack_pop_voidptr(stack);
switch (node->type) {
case LITERAL: {
tre_literal_t *lit = node->obj;
int pos = lit->position;
int min = lit->code_min;
int max = lit->code_max;
if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
/* XXX - e.g. [ab] has only one position but two
nodes, so we are creating holes in the state space
here. Not fatal, just wastes memory. */
pos += *pos_add;
num_copied++;
} else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS)) {
/* Change this tag to empty. */
min = EMPTY;
max = pos = -1;
} else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) &&
first_tag) {
/* Maximize the first tag. */
tag_directions[max] = TRE_TAG_MAXIMIZE;
first_tag = 0;
}
*result = tre_ast_new_literal(mem, min, max, pos);
if (*result == NULL)
status = REG_ESPACE;
else {
tre_literal_t *p = (*result)->obj;
p->class = lit->class;
p->neg_classes = lit->neg_classes;
}
if (pos > *max_pos) *max_pos = pos;
break;
}
case UNION: {
tre_union_t *uni = node->obj;
tre_union_t *tmp;
*result = tre_ast_new_union(mem, uni->left, uni->right);
if (*result == NULL) {
status = REG_ESPACE;
break;
}
tmp = (*result)->obj;
result = &tmp->left;
STACK_PUSHX(stack, voidptr, uni->right);
STACK_PUSHX(stack, int, COPY_RECURSE);
STACK_PUSHX(stack, voidptr, &tmp->right);
STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
STACK_PUSHX(stack, voidptr, uni->left);
STACK_PUSHX(stack, int, COPY_RECURSE);
break;
}
case CATENATION: {
tre_catenation_t *cat = node->obj;
tre_catenation_t *tmp;
*result = tre_ast_new_catenation(mem, cat->left, cat->right);
if (*result == NULL) {
status = REG_ESPACE;
break;
}
tmp = (*result)->obj;
tmp->left = NULL;
tmp->right = NULL;
result = &tmp->left;
STACK_PUSHX(stack, voidptr, cat->right);
STACK_PUSHX(stack, int, COPY_RECURSE);
STACK_PUSHX(stack, voidptr, &tmp->right);
STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
STACK_PUSHX(stack, voidptr, cat->left);
STACK_PUSHX(stack, int, COPY_RECURSE);
break;
}
case ITERATION: {
tre_iteration_t *iter = node->obj;
STACK_PUSHX(stack, voidptr, iter->arg);
STACK_PUSHX(stack, int, COPY_RECURSE);
*result = tre_ast_new_iter(mem, iter->arg, iter->min, iter->max,
iter->minimal);
if (*result == NULL) {
status = REG_ESPACE;
break;
}
iter = (*result)->obj;
result = &iter->arg;
break;
}
default:
assert(0);
break;
}
break;
}
}
*pos_add += num_copied;
return status;
}
typedef enum { EXPAND_RECURSE, EXPAND_AFTER_ITER } tre_expand_ast_symbol_t;
/* Expands each iteration node that has a finite nonzero minimum or maximum
iteration count to a catenated sequence of copies of the node. */
static reg_errcode_t tre_expand_ast(tre_mem_t mem, tre_stack_t *stack,
tre_ast_node_t *ast, int *position,
tre_tag_direction_t *tag_directions) {
reg_errcode_t status = REG_OK;
int bottom = tre_stack_num_objects(stack);
int pos_add = 0;
int pos_add_total = 0;
int max_pos = 0;
int iter_depth = 0;
STACK_PUSHR(stack, voidptr, ast);
STACK_PUSHR(stack, int, EXPAND_RECURSE);
while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
tre_ast_node_t *node;
tre_expand_ast_symbol_t symbol;
if (status != REG_OK) break;
symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
node = tre_stack_pop_voidptr(stack);
switch (symbol) {
case EXPAND_RECURSE:
switch (node->type) {
case LITERAL: {
tre_literal_t *lit = node->obj;
if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
lit->position += pos_add;
if (lit->position > max_pos) max_pos = lit->position;
}
break;
}
case UNION: {
tre_union_t *uni = node->obj;
STACK_PUSHX(stack, voidptr, uni->right);
STACK_PUSHX(stack, int, EXPAND_RECURSE);
STACK_PUSHX(stack, voidptr, uni->left);
STACK_PUSHX(stack, int, EXPAND_RECURSE);
break;
}
case CATENATION: {
tre_catenation_t *cat = node->obj;
STACK_PUSHX(stack, voidptr, cat->right);
STACK_PUSHX(stack, int, EXPAND_RECURSE);
STACK_PUSHX(stack, voidptr, cat->left);
STACK_PUSHX(stack, int, EXPAND_RECURSE);
break;
}
case ITERATION: {
tre_iteration_t *iter = node->obj;
STACK_PUSHX(stack, int, pos_add);
STACK_PUSHX(stack, voidptr, node);
STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
STACK_PUSHX(stack, voidptr, iter->arg);
STACK_PUSHX(stack, int, EXPAND_RECURSE);
/* If we are going to expand this node at EXPAND_AFTER_ITER
then don't increase the `pos' fields of the nodes now, it
will get done when expanding. */
if (iter->min > 1 || iter->max > 1) pos_add = 0;
iter_depth++;
break;
}
default:
assert(0);
break;
}
break;
case EXPAND_AFTER_ITER: {
tre_iteration_t *iter = node->obj;
int pos_add_last;
pos_add = tre_stack_pop_int(stack);
pos_add_last = pos_add;
if (iter->min > 1 || iter->max > 1) {
tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
int j;
int pos_add_save = pos_add;
/* Create a catenated sequence of copies of the node. */
for (j = 0; j < iter->min; j++) {
tre_ast_node_t *copy;
/* Remove tags from all but the last copy. */
int flags = ((j + 1 < iter->min) ? COPY_REMOVE_TAGS
: COPY_MAXIMIZE_FIRST_TAG);
pos_add_save = pos_add;
status = tre_copy_ast(mem, stack, iter->arg, flags, &pos_add,
tag_directions, &copy, &max_pos);
if (status != REG_OK) return status;
if (seq1 != NULL)
seq1 = tre_ast_new_catenation(mem, seq1, copy);
else
seq1 = copy;
if (seq1 == NULL) return REG_ESPACE;
}
if (iter->max == -1) {
/* No upper limit. */
pos_add_save = pos_add;
status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL,
&seq2, &max_pos);
if (status != REG_OK) return status;
seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
if (seq2 == NULL) return REG_ESPACE;
} else {
for (j = iter->min; j < iter->max; j++) {
tre_ast_node_t *tmp, *copy;
pos_add_save = pos_add;
status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL,
&copy, &max_pos);
if (status != REG_OK) return status;
if (seq2 != NULL)
seq2 = tre_ast_new_catenation(mem, copy, seq2);
else
seq2 = copy;
if (seq2 == NULL) return REG_ESPACE;
tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
if (tmp == NULL) return REG_ESPACE;
seq2 = tre_ast_new_union(mem, tmp, seq2);
if (seq2 == NULL) return REG_ESPACE;
}
}
pos_add = pos_add_save;
if (seq1 == NULL)
seq1 = seq2;
else if (seq2 != NULL)
seq1 = tre_ast_new_catenation(mem, seq1, seq2);
if (seq1 == NULL) return REG_ESPACE;
node->obj = seq1->obj;
node->type = seq1->type;
}
iter_depth--;
pos_add_total += pos_add - pos_add_last;
if (iter_depth == 0) pos_add = pos_add_total;
break;
}
default:
assert(0);
break;
}
}
*position += pos_add_total;
/* `max_pos' should never be larger than `*position' if the above
code works, but just an extra safeguard let's make sure
`*position' is set large enough so enough memory will be
allocated for the transition table. */
if (max_pos > *position) *position = max_pos;
return status;
}
static tre_pos_and_tags_t *tre_set_empty(tre_mem_t mem) {
tre_pos_and_tags_t *new_set;
new_set = tre_mem_calloc(mem, sizeof(*new_set));
if (new_set == NULL) return NULL;
new_set[0].position = -1;
new_set[0].code_min = -1;
new_set[0].code_max = -1;
return new_set;
}
static tre_pos_and_tags_t *tre_set_one(tre_mem_t mem, int position,
int code_min, int code_max,
tre_ctype_t class,
tre_ctype_t *neg_classes, int backref) {
tre_pos_and_tags_t *new_set;
new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2);
if (new_set == NULL) return NULL;
new_set[0].position = position;
new_set[0].code_min = code_min;
new_set[0].code_max = code_max;
new_set[0].class = class;
new_set[0].neg_classes = neg_classes;
new_set[0].backref = backref;
new_set[1].position = -1;
new_set[1].code_min = -1;
new_set[1].code_max = -1;
return new_set;
}
static tre_pos_and_tags_t *tre_set_union(tre_mem_t mem,
tre_pos_and_tags_t *set1,
tre_pos_and_tags_t *set2, int *tags,
int assertions) {
int s1, s2, i, j;
tre_pos_and_tags_t *new_set;
int *new_tags;
int num_tags;
for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++)
;
for (s1 = 0; set1[s1].position >= 0; s1++)
;
for (s2 = 0; set2[s2].position >= 0; s2++)
;
new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1));
if (!new_set) return NULL;
for (s1 = 0; set1[s1].position >= 0; s1++) {
new_set[s1].position = set1[s1].position;
new_set[s1].code_min = set1[s1].code_min;
new_set[s1].code_max = set1[s1].code_max;
new_set[s1].assertions = set1[s1].assertions | assertions;
new_set[s1].class = set1[s1].class;
new_set[s1].neg_classes = set1[s1].neg_classes;
new_set[s1].backref = set1[s1].backref;
if (set1[s1].tags == NULL && tags == NULL)
new_set[s1].tags = NULL;
else {
for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++)
;
new_tags = tre_mem_alloc(mem, (sizeof(*new_tags) * (i + num_tags + 1)));
if (new_tags == NULL) return NULL;
for (j = 0; j < i; j++) new_tags[j] = set1[s1].tags[j];
for (i = 0; i < num_tags; i++) new_tags[j + i] = tags[i];
new_tags[j + i] = -1;
new_set[s1].tags = new_tags;
}
}
for (s2 = 0; set2[s2].position >= 0; s2++) {
new_set[s1 + s2].position = set2[s2].position;
new_set[s1 + s2].code_min = set2[s2].code_min;
new_set[s1 + s2].code_max = set2[s2].code_max;
/* XXX - why not | assertions here as well? */
new_set[s1 + s2].assertions = set2[s2].assertions;
new_set[s1 + s2].class = set2[s2].class;
new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
new_set[s1 + s2].backref = set2[s2].backref;
if (set2[s2].tags == NULL)
new_set[s1 + s2].tags = NULL;
else {
for (i = 0; set2[s2].tags[i] >= 0; i++)
;
new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
if (new_tags == NULL) return NULL;
for (j = 0; j < i; j++) new_tags[j] = set2[s2].tags[j];
new_tags[j] = -1;
new_set[s1 + s2].tags = new_tags;
}
}
new_set[s1 + s2].position = -1;
return new_set;
}
/* Finds the empty path through `node' which is the one that should be
taken according to POSIX.2 rules, and adds the tags on that path to
`tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is
set to the number of tags seen on the path. */
static reg_errcode_t tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node,
int *tags, int *assertions,
int *num_tags_seen) {
tre_literal_t *lit;
tre_union_t *uni;
tre_catenation_t *cat;
tre_iteration_t *iter;
int i;
int bottom = tre_stack_num_objects(stack);
reg_errcode_t status = REG_OK;
if (num_tags_seen) *num_tags_seen = 0;
status = tre_stack_push_voidptr(stack, node);
/* Walk through the tree recursively. */
while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
node = tre_stack_pop_voidptr(stack);
switch (node->type) {
case LITERAL:
lit = (tre_literal_t *)node->obj;
switch (lit->code_min) {
case TAG:
if (lit->code_max >= 0) {
if (tags != NULL) {
/* Add the tag to `tags'. */
for (i = 0; tags[i] >= 0; i++)
if (tags[i] == lit->code_max) break;
if (tags[i] < 0) {
tags[i] = lit->code_max;
tags[i + 1] = -1;
}
}
if (num_tags_seen) (*num_tags_seen)++;
}
break;
case ASSERTION:
assert(lit->code_max >= 1 || lit->code_max <= ASSERT_LAST);
if (assertions != NULL) *assertions |= lit->code_max;
break;
case EMPTY:
break;
default:
assert(0);
break;
}
break;
case UNION:
/* Subexpressions starting earlier take priority over ones
starting later, so we prefer the left subexpression over the
right subexpression. */
uni = (tre_union_t *)node->obj;
if (uni->left->nullable)
STACK_PUSHX(stack, voidptr, uni->left)
else if (uni->right->nullable)
STACK_PUSHX(stack, voidptr, uni->right)
else
assert(0);
break;
case CATENATION:
/* The path must go through both children. */
cat = (tre_catenation_t *)node->obj;
assert(cat->left->nullable);
assert(cat->right->nullable);
STACK_PUSHX(stack, voidptr, cat->left);
STACK_PUSHX(stack, voidptr, cat->right);
break;
case ITERATION:
/* A match with an empty string is preferred over no match at
all, so we go through the argument if possible. */
iter = (tre_iteration_t *)node->obj;
if (iter->arg->nullable) STACK_PUSHX(stack, voidptr, iter->arg);
break;
default:
assert(0);
break;
}
}
return status;
}
typedef enum {
NFL_RECURSE,
NFL_POST_UNION,
NFL_POST_CATENATION,
NFL_POST_ITERATION
} tre_nfl_stack_symbol_t;
/* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for
the nodes of the AST `tree'. */
static reg_errcode_t tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack,
tre_ast_node_t *tree) {
int bottom = tre_stack_num_objects(stack);
STACK_PUSHR(stack, voidptr, tree);
STACK_PUSHR(stack, int, NFL_RECURSE);
while (tre_stack_num_objects(stack) > bottom) {
tre_nfl_stack_symbol_t symbol;
tre_ast_node_t *node;
symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
node = tre_stack_pop_voidptr(stack);
switch (symbol) {
case NFL_RECURSE:
switch (node->type) {
case LITERAL: {
tre_literal_t *lit = (tre_literal_t *)node->obj;
if (IS_BACKREF(lit)) {
/* Back references: nullable = false, firstpos = {i},
lastpos = {i}. */
node->nullable = 0;
node->firstpos =
tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, -1);
if (!node->firstpos) return REG_ESPACE;
node->lastpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX,
0, NULL, (int)lit->code_max);
if (!node->lastpos) return REG_ESPACE;
} else if (lit->code_min < 0) {
/* Tags, empty strings, params, and zero width assertions:
nullable = true, firstpos = {}, and lastpos = {}. */
node->nullable = 1;
node->firstpos = tre_set_empty(mem);
if (!node->firstpos) return REG_ESPACE;
node->lastpos = tre_set_empty(mem);
if (!node->lastpos) return REG_ESPACE;
} else {
/* Literal at position i: nullable = false, firstpos = {i},
lastpos = {i}. */
node->nullable = 0;
node->firstpos =
tre_set_one(mem, lit->position, (int)lit->code_min,
(int)lit->code_max, 0, NULL, -1);
if (!node->firstpos) return REG_ESPACE;
node->lastpos = tre_set_one(
mem, lit->position, (int)lit->code_min, (int)lit->code_max,
lit->class, lit->neg_classes, -1);
if (!node->lastpos) return REG_ESPACE;
}
break;
}
case UNION:
/* Compute the attributes for the two subtrees, and after that
for this node. */
STACK_PUSHR(stack, voidptr, node);
STACK_PUSHR(stack, int, NFL_POST_UNION);
STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right);
STACK_PUSHR(stack, int, NFL_RECURSE);
STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left);
STACK_PUSHR(stack, int, NFL_RECURSE);
break;
case CATENATION:
/* Compute the attributes for the two subtrees, and after that
for this node. */
STACK_PUSHR(stack, voidptr, node);
STACK_PUSHR(stack, int, NFL_POST_CATENATION);
STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right);
STACK_PUSHR(stack, int, NFL_RECURSE);
STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left);
STACK_PUSHR(stack, int, NFL_RECURSE);
break;
case ITERATION:
/* Compute the attributes for the subtree, and after that for
this node. */
STACK_PUSHR(stack, voidptr, node);
STACK_PUSHR(stack, int, NFL_POST_ITERATION);
STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg);
STACK_PUSHR(stack, int, NFL_RECURSE);
break;
}
break; /* end case: NFL_RECURSE */
case NFL_POST_UNION: {
tre_union_t *uni = (tre_union_t *)node->obj;
node->nullable = uni->left->nullable || uni->right->nullable;
node->firstpos = tre_set_union(mem, uni->left->firstpos,
uni->right->firstpos, NULL, 0);
if (!node->firstpos) return REG_ESPACE;
node->lastpos = tre_set_union(mem, uni->left->lastpos,
uni->right->lastpos, NULL, 0);
if (!node->lastpos) return REG_ESPACE;
break;
}
case NFL_POST_ITERATION: {
tre_iteration_t *iter = (tre_iteration_t *)node->obj;
if (iter->min == 0 || iter->arg->nullable)
node->nullable = 1;
else
node->nullable = 0;
node->firstpos = iter->arg->firstpos;
node->lastpos = iter->arg->lastpos;
break;
}
case NFL_POST_CATENATION: {
int num_tags, *tags, assertions;
reg_errcode_t status;
tre_catenation_t *cat = node->obj;
node->nullable = cat->left->nullable && cat->right->nullable;
/* Compute firstpos. */
if (cat->left->nullable) {
/* The left side matches the empty string. Make a first pass
with tre_match_empty() to get the number of tags and
parameters. */
status = tre_match_empty(stack, cat->left, NULL, NULL, &num_tags);
if (status != REG_OK) return status;
/* Allocate arrays for the tags and parameters. */
tags = malloc(sizeof(*tags) * (num_tags + 1));
if (!tags) return REG_ESPACE;
tags[0] = -1;
assertions = 0;
/* Second pass with tre_mach_empty() to get the list of
tags and parameters. */
status = tre_match_empty(stack, cat->left, tags, &assertions, NULL);
if (status != REG_OK) {
free(tags), tags = NULL;
return status;
}
node->firstpos = tre_set_union(mem, cat->right->firstpos,
cat->left->firstpos, tags, assertions);
free(tags), tags = NULL;
if (!node->firstpos) return REG_ESPACE;
} else {
node->firstpos = cat->left->firstpos;
}
/* Compute lastpos. */
if (cat->right->nullable) {
/* The right side matches the empty string. Make a first pass
with tre_match_empty() to get the number of tags and
parameters. */
status = tre_match_empty(stack, cat->right, NULL, NULL, &num_tags);
if (status != REG_OK) return status;
/* Allocate arrays for the tags and parameters. */
tags = malloc(sizeof(int) * (num_tags + 1));
if (!tags) return REG_ESPACE;
tags[0] = -1;
assertions = 0;
/* Second pass with tre_mach_empty() to get the list of
tags and parameters. */
status = tre_match_empty(stack, cat->right, tags, &assertions, NULL);
if (status != REG_OK) {
free(tags), tags = NULL;
return status;
}
node->lastpos = tre_set_union(mem, cat->left->lastpos,
cat->right->lastpos, tags, assertions);
free(tags), tags = NULL;
if (!node->lastpos) return REG_ESPACE;
} else {
node->lastpos = cat->right->lastpos;
}
break;
}
default:
assert(0);
break;
}
}
return REG_OK;
}
/* Adds a transition from each position in `p1' to each position in `p2'. */
static reg_errcode_t tre_make_trans(tre_pos_and_tags_t *p1,
tre_pos_and_tags_t *p2,
tre_tnfa_transition_t *transitions,
int *counts, int *offs) {
tre_pos_and_tags_t *orig_p2 = p2;
tre_tnfa_transition_t *trans;
int i, j, k, l, dup, prev_p2_pos;
if (transitions != NULL)
while (p1->position >= 0) {
p2 = orig_p2;
prev_p2_pos = -1;
while (p2->position >= 0) {
/* Optimization: if this position was already handled, skip it. */
if (p2->position == prev_p2_pos) {
p2++;
continue;
}
prev_p2_pos = p2->position;
/* Set `trans' to point to the next unused transition from
position `p1->position'. */
trans = transitions + offs[p1->position];
while (trans->state != NULL) {
#if 0
/* If we find a previous transition from `p1->position' to
`p2->position', it is overwritten. This can happen only
if there are nested loops in the regexp, like in "((a)*)*".
In POSIX.2 repetition using the outer loop is always
preferred over using the inner loop. Therefore the
transition for the inner loop is useless and can be thrown
away. */
/* XXX - The same position is used for all nodes in a bracket
expression, so this optimization cannot be used (it will
break bracket expressions) unless I figure out a way to
detect it here. */
if (trans->state_id == p2->position)
{
break;
}
#endif
trans++;
}
if (trans->state == NULL) (trans + 1)->state = NULL;
/* Use the character ranges, assertions, etc. from `p1' for
the transition from `p1' to `p2'. */
trans->code_min = p1->code_min;
trans->code_max = p1->code_max;
trans->state = transitions + offs[p2->position];
trans->state_id = p2->position;
trans->assertions =
p1->assertions | p2->assertions |
(p1->class ? ASSERT_CHAR_CLASS : 0) |
(p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0);
if (p1->backref >= 0) {
assert((trans->assertions & ASSERT_CHAR_CLASS) == 0);
assert(p2->backref < 0);
trans->u.backref = p1->backref;
trans->assertions |= ASSERT_BACKREF;
} else
trans->u.class = p1->class;
if (p1->neg_classes != NULL) {
for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
;
trans->neg_classes = malloc(sizeof(*trans->neg_classes) * (i + 1));
if (trans->neg_classes == NULL) return REG_ESPACE;
for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
trans->neg_classes[i] = p1->neg_classes[i];
trans->neg_classes[i] = (tre_ctype_t)0;
} else
trans->neg_classes = NULL;
/* Find out how many tags this transition has. */
i = 0;
if (p1->tags != NULL)
while (p1->tags[i] >= 0) i++;
j = 0;
if (p2->tags != NULL)
while (p2->tags[j] >= 0) j++;
/* If we are overwriting a transition, free the old tag array. */
if (trans->tags != NULL) free(trans->tags), trans->tags = NULL;
trans->tags = NULL;
/* If there were any tags, allocate an array and fill it. */
if (i + j > 0) {
trans->tags = malloc(sizeof(*trans->tags) * (i + j + 1));
if (!trans->tags) return REG_ESPACE;
i = 0;
if (p1->tags != NULL)
while (p1->tags[i] >= 0) {
trans->tags[i] = p1->tags[i];
i++;
}
l = i;
j = 0;
if (p2->tags != NULL)
while (p2->tags[j] >= 0) {
/* Don't add duplicates. */
dup = 0;
for (k = 0; k < i; k++)
if (trans->tags[k] == p2->tags[j]) {
dup = 1;
break;
}
if (!dup) trans->tags[l++] = p2->tags[j];
j++;
}
trans->tags[l] = -1;
}
p2++;
}
p1++;
}
else
/* Compute a maximum limit for the number of transitions leaving
from each state. */
while (p1->position >= 0) {
p2 = orig_p2;
while (p2->position >= 0) {
counts[p1->position]++;
p2++;
}
p1++;
}
return REG_OK;
}
/* Converts the syntax tree to a TNFA. All the transitions in the TNFA are
labelled with one character range (there are no transitions on empty
strings). The TNFA takes O(n^2) space in the worst case, `n' is size of
the regexp. */
static reg_errcode_t tre_ast_to_tnfa(tre_ast_node_t *node,
tre_tnfa_transition_t *transitions,
int *counts, int *offs) {
tre_union_t *uni;
tre_catenation_t *cat;
tre_iteration_t *iter;
reg_errcode_t errcode = REG_OK;
/* XXX - recurse using a stack!. */
switch (node->type) {
case LITERAL:
break;
case UNION:
uni = (tre_union_t *)node->obj;
errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs);
if (errcode != REG_OK) return errcode;
errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs);
break;
case CATENATION:
cat = (tre_catenation_t *)node->obj;
/* Add a transition from each position in cat->left->lastpos
to each position in cat->right->firstpos. */
errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos,
transitions, counts, offs);
if (errcode != REG_OK) return errcode;
errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs);
if (errcode != REG_OK) return errcode;
errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs);
break;
case ITERATION:
iter = (tre_iteration_t *)node->obj;
assert(iter->max == -1 || iter->max == 1);
if (iter->max == -1) {
assert(iter->min == 0 || iter->min == 1);
/* Add a transition from each last position in the iterated
expression to each first position. */
errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos,
transitions, counts, offs);
if (errcode != REG_OK) return errcode;
}
errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs);
break;
}
return errcode;
}
#define ERROR_EXIT(err) \
do { \
errcode = err; \
if (/*CONSTCOND*/ 1) goto error_exit; \
} while (/*CONSTCOND*/ 0)
int regcomp(regex_t *restrict preg, const char *restrict regex, int cflags) {
tre_stack_t *stack;
tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r;
tre_pos_and_tags_t *p;
int *counts = NULL, *offs = NULL;
int i, add = 0;
tre_tnfa_transition_t *transitions, *initial;
tre_tnfa_t *tnfa = NULL;
tre_submatch_data_t *submatch_data;
tre_tag_direction_t *tag_directions = NULL;
reg_errcode_t errcode;
tre_mem_t mem;
/* Parse context. */
tre_parse_ctx_t parse_ctx;
/* Allocate a stack used throughout the compilation process for various
purposes. */
stack = tre_stack_new(512, 1024000, 128);
if (!stack) return REG_ESPACE;
/* Allocate a fast memory allocator. */
mem = tre_mem_new();
if (!mem) {
tre_stack_destroy(stack);
return REG_ESPACE;
}
/* Parse the regexp. */
memset(&parse_ctx, 0, sizeof(parse_ctx));
parse_ctx.mem = mem;
parse_ctx.stack = stack;
parse_ctx.start = regex;
parse_ctx.cflags = cflags;
parse_ctx.max_backref = -1;
errcode = tre_parse(&parse_ctx);
if (errcode != REG_OK) ERROR_EXIT(errcode);
preg->re_nsub = parse_ctx.submatch_id - 1;
tree = parse_ctx.n;
#ifdef TRE_DEBUG
tre_ast_print(tree);
#endif /* TRE_DEBUG */
/* Referring to nonexistent subexpressions is illegal. */
if (parse_ctx.max_backref > (int)preg->re_nsub) ERROR_EXIT(REG_ESUBREG);
/* Allocate the TNFA struct. */
tnfa = calloc(1, sizeof(tre_tnfa_t));
if (tnfa == NULL) ERROR_EXIT(REG_ESPACE);
tnfa->have_backrefs = parse_ctx.max_backref >= 0;
tnfa->have_approx = 0;
tnfa->num_submatches = parse_ctx.submatch_id;
/* Set up tags for submatch addressing. If REG_NOSUB is set and the
regexp does not have back references, this can be skipped. */
if (tnfa->have_backrefs || !(cflags & REG_NOSUB)) {
/* Figure out how many tags we will need. */
errcode = tre_add_tags(NULL, stack, tree, tnfa);
if (errcode != REG_OK) ERROR_EXIT(errcode);
if (tnfa->num_tags > 0) {
tag_directions = malloc(sizeof(*tag_directions) * (tnfa->num_tags + 1));
if (tag_directions == NULL) ERROR_EXIT(REG_ESPACE);
tnfa->tag_directions = tag_directions;
memset(tag_directions, -1,
sizeof(*tag_directions) * (tnfa->num_tags + 1));
}
tnfa->minimal_tags =
calloc((unsigned)tnfa->num_tags * 2 + 1, sizeof(*tnfa->minimal_tags));
if (tnfa->minimal_tags == NULL) ERROR_EXIT(REG_ESPACE);
submatch_data =
calloc((unsigned)parse_ctx.submatch_id, sizeof(*submatch_data));
if (submatch_data == NULL) ERROR_EXIT(REG_ESPACE);
tnfa->submatch_data = submatch_data;
errcode = tre_add_tags(mem, stack, tree, tnfa);
if (errcode != REG_OK) ERROR_EXIT(errcode);
}
/* Expand iteration nodes. */
errcode =
tre_expand_ast(mem, stack, tree, &parse_ctx.position, tag_directions);
if (errcode != REG_OK) ERROR_EXIT(errcode);
/* Add a dummy node for the final state.
XXX - For certain patterns this dummy node can be optimized away,
for example "a*" or "ab*". Figure out a simple way to detect
this possibility. */
tmp_ast_l = tree;
tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++);
if (tmp_ast_r == NULL) ERROR_EXIT(REG_ESPACE);
tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r);
if (tree == NULL) ERROR_EXIT(REG_ESPACE);
errcode = tre_compute_nfl(mem, stack, tree);
if (errcode != REG_OK) ERROR_EXIT(errcode);
counts = malloc(sizeof(int) * parse_ctx.position);
if (counts == NULL) ERROR_EXIT(REG_ESPACE);
offs = malloc(sizeof(int) * parse_ctx.position);
if (offs == NULL) ERROR_EXIT(REG_ESPACE);
for (i = 0; i < parse_ctx.position; i++) counts[i] = 0;
tre_ast_to_tnfa(tree, NULL, counts, NULL);
add = 0;
for (i = 0; i < parse_ctx.position; i++) {
offs[i] = add;
add += counts[i] + 1;
counts[i] = 0;
}
transitions = calloc((unsigned)add + 1, sizeof(*transitions));
if (transitions == NULL) ERROR_EXIT(REG_ESPACE);
tnfa->transitions = transitions;
tnfa->num_transitions = add;
errcode = tre_ast_to_tnfa(tree, transitions, counts, offs);
if (errcode != REG_OK) ERROR_EXIT(errcode);
tnfa->firstpos_chars = NULL;
p = tree->firstpos;
i = 0;
while (p->position >= 0) {
i++;
p++;
}
initial = calloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t));
if (initial == NULL) ERROR_EXIT(REG_ESPACE);
tnfa->initial = initial;
i = 0;
for (p = tree->firstpos; p->position >= 0; p++) {
initial[i].state = transitions + offs[p->position];
initial[i].state_id = p->position;
initial[i].tags = NULL;
/* Copy the arrays p->tags, and p->params, they are allocated
from a tre_mem object. */
if (p->tags) {
int j;
for (j = 0; p->tags[j] >= 0; j++)
;
initial[i].tags = malloc(sizeof(*p->tags) * (j + 1));
if (!initial[i].tags) ERROR_EXIT(REG_ESPACE);
memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
}
initial[i].assertions = p->assertions;
i++;
}
initial[i].state = NULL;
tnfa->num_transitions = add;
tnfa->final = transitions + offs[tree->lastpos[0].position];
tnfa->num_states = parse_ctx.position;
tnfa->cflags = cflags;
tre_mem_destroy(mem);
tre_stack_destroy(stack);
free(counts), counts = NULL;
free(offs), offs = NULL;
preg->TRE_REGEX_T_FIELD = (void *)tnfa;
return REG_OK;
error_exit:
/* Free everything that was allocated and return the error code. */
tre_mem_destroy(mem);
if (stack != NULL) tre_stack_destroy(stack);
if (counts != NULL) free(counts), counts = NULL;
if (offs != NULL) free(offs), offs = NULL;
preg->TRE_REGEX_T_FIELD = (void *)tnfa;
regfree(preg);
return errcode;
}
void regfree(regex_t *preg) {
tre_tnfa_t *tnfa;
unsigned int i;
tre_tnfa_transition_t *trans;
tnfa = (void *)preg->TRE_REGEX_T_FIELD;
if (!tnfa) return;
for (i = 0; i < tnfa->num_transitions; i++)
if (tnfa->transitions[i].state) {
if (tnfa->transitions[i].tags)
free(tnfa->transitions[i].tags), tnfa->transitions[i].tags = NULL;
if (tnfa->transitions[i].neg_classes)
free(tnfa->transitions[i].neg_classes),
tnfa->transitions[i].neg_classes = NULL;
}
if (tnfa->transitions) free(tnfa->transitions), tnfa->transitions = NULL;
if (tnfa->initial) {
for (trans = tnfa->initial; trans->state; trans++) {
if (trans->tags) free(trans->tags), trans->tags = NULL;
}
free(tnfa->initial), tnfa->initial = NULL;
}
if (tnfa->submatch_data) {
for (i = 0; i < tnfa->num_submatches; i++)
if (tnfa->submatch_data[i].parents)
free(tnfa->submatch_data[i].parents),
tnfa->submatch_data[i].parents = NULL;
free(tnfa->submatch_data), tnfa->submatch_data = NULL;
}
if (tnfa->tag_directions)
free(tnfa->tag_directions), tnfa->tag_directions = NULL;
if (tnfa->firstpos_chars)
free(tnfa->firstpos_chars), tnfa->firstpos_chars = NULL;
if (tnfa->minimal_tags) free(tnfa->minimal_tags), tnfa->minimal_tags = NULL;
free(tnfa), tnfa = NULL;
}