2596 lines
87 KiB
C
2596 lines
87 KiB
C
|
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
|
||
|
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
|
||
|
╚──────────────────────────────────────────────────────────────────────────────╝
|
||
|
│ │
|
||
|
│ regcomp.c - TRE POSIX compatible regex compilation functions. │
|
||
|
│ │
|
||
|
│ Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi> │
|
||
|
│ All rights reserved. │
|
||
|
│ │
|
||
|
│ Redistribution and use in source and binary forms, with or without │
|
||
|
│ modification, are permitted provided that the following conditions │
|
||
|
│ are met: │
|
||
|
│ │
|
||
|
│ 1. Redistributions of source code must retain the above copyright │
|
||
|
│ notice, this list of conditions and the following disclaimer. │
|
||
|
│ │
|
||
|
│ 2. Redistributions in binary form must reproduce the above copyright │
|
||
|
│ notice, this list of conditions and the following disclaimer in │
|
||
|
│ the documentation and/or other materials provided with the │
|
||
|
│ distribution. │
|
||
|
│ │
|
||
|
│ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS │
|
||
|
│ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT │
|
||
|
│ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR │
|
||
|
│ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT │
|
||
|
│ HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, │
|
||
|
│ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT │
|
||
|
│ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, │
|
||
|
│ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY │
|
||
|
│ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT │
|
||
|
│ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE │
|
||
|
│ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
|
||
|
│ │
|
||
|
│──────────────────────────────────────────────────────────────────────────────│
|
||
|
│ │
|
||
|
│ Musl Libc │
|
||
|
│ Copyright © 2005-2014 Rich Felker, et al. │
|
||
|
│ │
|
||
|
│ Permission is hereby granted, free of charge, to any person obtaining │
|
||
|
│ a copy of this software and associated documentation files (the │
|
||
|
│ "Software"), to deal in the Software without restriction, including │
|
||
|
│ without limitation the rights to use, copy, modify, merge, publish, │
|
||
|
│ distribute, sublicense, and/or sell copies of the Software, and to │
|
||
|
│ permit persons to whom the Software is furnished to do so, subject to │
|
||
|
│ the following conditions: │
|
||
|
│ │
|
||
|
│ The above copyright notice and this permission notice shall be │
|
||
|
│ included in all copies or substantial portions of the Software. │
|
||
|
│ │
|
||
|
│ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │
|
||
|
│ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │
|
||
|
│ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │
|
||
|
│ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │
|
||
|
│ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │
|
||
|
│ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
|
||
|
│ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
|
||
|
│ │
|
||
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
||
|
#include "third_party/regex/tre.inc"
|
||
|
|
||
|
#define CHARCLASS_NAME_MAX 14
|
||
|
#define RE_DUP_MAX 255
|
||
|
|
||
|
/***********************************************************************
|
||
|
from tre-compile.h
|
||
|
***********************************************************************/
|
||
|
|
||
|
typedef struct {
|
||
|
int position;
|
||
|
int code_min;
|
||
|
int code_max;
|
||
|
int *tags;
|
||
|
int assertions;
|
||
|
tre_ctype_t class;
|
||
|
tre_ctype_t *neg_classes;
|
||
|
int backref;
|
||
|
} tre_pos_and_tags_t;
|
||
|
|
||
|
/***********************************************************************
|
||
|
from tre-ast.c and tre-ast.h
|
||
|
***********************************************************************/
|
||
|
|
||
|
/* The different AST node types. */
|
||
|
typedef enum { LITERAL, CATENATION, ITERATION, UNION } tre_ast_type_t;
|
||
|
|
||
|
/* Special subtypes of TRE_LITERAL. */
|
||
|
#define EMPTY -1 /* Empty leaf (denotes empty string). */
|
||
|
#define ASSERTION -2 /* Assertion leaf. */
|
||
|
#define TAG -3 /* Tag leaf. */
|
||
|
#define BACKREF -4 /* Back reference leaf. */
|
||
|
|
||
|
#define IS_SPECIAL(x) ((x)->code_min < 0)
|
||
|
#define IS_EMPTY(x) ((x)->code_min == EMPTY)
|
||
|
#define IS_ASSERTION(x) ((x)->code_min == ASSERTION)
|
||
|
#define IS_TAG(x) ((x)->code_min == TAG)
|
||
|
#define IS_BACKREF(x) ((x)->code_min == BACKREF)
|
||
|
|
||
|
/* A generic AST node. All AST nodes consist of this node on the top
|
||
|
level with `obj' pointing to the actual content. */
|
||
|
typedef struct {
|
||
|
tre_ast_type_t type; /* Type of the node. */
|
||
|
void *obj; /* Pointer to actual node. */
|
||
|
int nullable;
|
||
|
int submatch_id;
|
||
|
int num_submatches;
|
||
|
int num_tags;
|
||
|
tre_pos_and_tags_t *firstpos;
|
||
|
tre_pos_and_tags_t *lastpos;
|
||
|
} tre_ast_node_t;
|
||
|
|
||
|
/* A "literal" node. These are created for assertions, back references,
|
||
|
tags, matching parameter settings, and all expressions that match one
|
||
|
character. */
|
||
|
typedef struct {
|
||
|
long code_min;
|
||
|
long code_max;
|
||
|
int position;
|
||
|
tre_ctype_t class;
|
||
|
tre_ctype_t *neg_classes;
|
||
|
} tre_literal_t;
|
||
|
|
||
|
/* A "catenation" node. These are created when two regexps are concatenated.
|
||
|
If there are more than one subexpressions in sequence, the `left' part
|
||
|
holds all but the last, and `right' part holds the last subexpression
|
||
|
(catenation is left associative). */
|
||
|
typedef struct {
|
||
|
tre_ast_node_t *left;
|
||
|
tre_ast_node_t *right;
|
||
|
} tre_catenation_t;
|
||
|
|
||
|
/* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}"
|
||
|
operators. */
|
||
|
typedef struct {
|
||
|
/* Subexpression to match. */
|
||
|
tre_ast_node_t *arg;
|
||
|
/* Minimum number of consecutive matches. */
|
||
|
int min;
|
||
|
/* Maximum number of consecutive matches. */
|
||
|
int max;
|
||
|
/* If 0, match as many characters as possible, if 1 match as few as
|
||
|
possible. Note that this does not always mean the same thing as
|
||
|
matching as many/few repetitions as possible. */
|
||
|
unsigned int minimal : 1;
|
||
|
} tre_iteration_t;
|
||
|
|
||
|
/* An "union" node. These are created for the "|" operator. */
|
||
|
typedef struct {
|
||
|
tre_ast_node_t *left;
|
||
|
tre_ast_node_t *right;
|
||
|
} tre_union_t;
|
||
|
|
||
|
static tre_ast_node_t *tre_ast_new_node(tre_mem_t mem, int type, void *obj) {
|
||
|
tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node);
|
||
|
if (!node || !obj) return 0;
|
||
|
node->obj = obj;
|
||
|
node->type = type;
|
||
|
node->nullable = -1;
|
||
|
node->submatch_id = -1;
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
static tre_ast_node_t *tre_ast_new_literal(tre_mem_t mem, int code_min,
|
||
|
int code_max, int position) {
|
||
|
tre_ast_node_t *node;
|
||
|
tre_literal_t *lit;
|
||
|
|
||
|
lit = tre_mem_calloc(mem, sizeof *lit);
|
||
|
node = tre_ast_new_node(mem, LITERAL, lit);
|
||
|
if (!node) return 0;
|
||
|
lit->code_min = code_min;
|
||
|
lit->code_max = code_max;
|
||
|
lit->position = position;
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
static tre_ast_node_t *tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg,
|
||
|
int min, int max, int minimal) {
|
||
|
tre_ast_node_t *node;
|
||
|
tre_iteration_t *iter;
|
||
|
|
||
|
iter = tre_mem_calloc(mem, sizeof *iter);
|
||
|
node = tre_ast_new_node(mem, ITERATION, iter);
|
||
|
if (!node) return 0;
|
||
|
iter->arg = arg;
|
||
|
iter->min = min;
|
||
|
iter->max = max;
|
||
|
iter->minimal = minimal;
|
||
|
node->num_submatches = arg->num_submatches;
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
static tre_ast_node_t *tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left,
|
||
|
tre_ast_node_t *right) {
|
||
|
tre_ast_node_t *node;
|
||
|
tre_union_t *un;
|
||
|
|
||
|
if (!left) return right;
|
||
|
un = tre_mem_calloc(mem, sizeof *un);
|
||
|
node = tre_ast_new_node(mem, UNION, un);
|
||
|
if (!node || !right) return 0;
|
||
|
un->left = left;
|
||
|
un->right = right;
|
||
|
node->num_submatches = left->num_submatches + right->num_submatches;
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
static tre_ast_node_t *tre_ast_new_catenation(tre_mem_t mem,
|
||
|
tre_ast_node_t *left,
|
||
|
tre_ast_node_t *right) {
|
||
|
tre_ast_node_t *node;
|
||
|
tre_catenation_t *cat;
|
||
|
|
||
|
if (!left) return right;
|
||
|
cat = tre_mem_calloc(mem, sizeof *cat);
|
||
|
node = tre_ast_new_node(mem, CATENATION, cat);
|
||
|
if (!node) return 0;
|
||
|
cat->left = left;
|
||
|
cat->right = right;
|
||
|
node->num_submatches = left->num_submatches + right->num_submatches;
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/***********************************************************************
|
||
|
from tre-stack.c and tre-stack.h
|
||
|
***********************************************************************/
|
||
|
|
||
|
typedef struct tre_stack_rec tre_stack_t;
|
||
|
|
||
|
/* Creates a new stack object. `size' is initial size in bytes, `max_size'
|
||
|
is maximum size, and `increment' specifies how much more space will be
|
||
|
allocated with realloc() if all space gets used up. Returns the stack
|
||
|
object or NULL if out of memory. */
|
||
|
static tre_stack_t *tre_stack_new(int size, int max_size, int increment);
|
||
|
|
||
|
/* Frees the stack object. */
|
||
|
static void tre_stack_destroy(tre_stack_t *s);
|
||
|
|
||
|
/* Returns the current number of objects in the stack. */
|
||
|
static int tre_stack_num_objects(tre_stack_t *s);
|
||
|
|
||
|
/* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes
|
||
|
`value' on top of stack `s'. Returns REG_ESPACE if out of memory.
|
||
|
This tries to realloc() more space before failing if maximum size
|
||
|
has not yet been reached. Returns REG_OK if successful. */
|
||
|
#define declare_pushf(typetag, type) \
|
||
|
static reg_errcode_t tre_stack_push_##typetag(tre_stack_t *s, type value)
|
||
|
|
||
|
declare_pushf(voidptr, void *);
|
||
|
declare_pushf(int, int);
|
||
|
|
||
|
/* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost
|
||
|
element off of stack `s' and returns it. The stack must not be
|
||
|
empty. */
|
||
|
#define declare_popf(typetag, type) \
|
||
|
static type tre_stack_pop_##typetag(tre_stack_t *s)
|
||
|
|
||
|
declare_popf(voidptr, void *);
|
||
|
declare_popf(int, int);
|
||
|
|
||
|
/* Just to save some typing. */
|
||
|
#define STACK_PUSH(s, typetag, value) \
|
||
|
do { \
|
||
|
status = tre_stack_push_##typetag(s, value); \
|
||
|
} while (/*CONSTCOND*/ 0)
|
||
|
|
||
|
#define STACK_PUSHX(s, typetag, value) \
|
||
|
{ \
|
||
|
status = tre_stack_push_##typetag(s, value); \
|
||
|
if (status != REG_OK) break; \
|
||
|
}
|
||
|
|
||
|
#define STACK_PUSHR(s, typetag, value) \
|
||
|
{ \
|
||
|
reg_errcode_t _status; \
|
||
|
_status = tre_stack_push_##typetag(s, value); \
|
||
|
if (_status != REG_OK) return _status; \
|
||
|
}
|
||
|
|
||
|
union tre_stack_item {
|
||
|
void *voidptr_value;
|
||
|
int int_value;
|
||
|
};
|
||
|
|
||
|
struct tre_stack_rec {
|
||
|
int size;
|
||
|
int max_size;
|
||
|
int increment;
|
||
|
int ptr;
|
||
|
union tre_stack_item *stack;
|
||
|
};
|
||
|
|
||
|
static tre_stack_t *tre_stack_new(int size, int max_size, int increment) {
|
||
|
tre_stack_t *s;
|
||
|
|
||
|
s = malloc(sizeof(*s));
|
||
|
if (s != NULL) {
|
||
|
s->stack = malloc(sizeof(*s->stack) * size);
|
||
|
if (s->stack == NULL) {
|
||
|
free(s), s = NULL;
|
||
|
return NULL;
|
||
|
}
|
||
|
s->size = size;
|
||
|
s->max_size = max_size;
|
||
|
s->increment = increment;
|
||
|
s->ptr = 0;
|
||
|
}
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
static void tre_stack_destroy(tre_stack_t *s) {
|
||
|
free(s->stack), s->stack = NULL;
|
||
|
free(s), s = NULL;
|
||
|
}
|
||
|
|
||
|
static int tre_stack_num_objects(tre_stack_t *s) { return s->ptr; }
|
||
|
|
||
|
static reg_errcode_t tre_stack_push(tre_stack_t *s,
|
||
|
union tre_stack_item value) {
|
||
|
if (s->ptr < s->size) {
|
||
|
s->stack[s->ptr] = value;
|
||
|
s->ptr++;
|
||
|
} else {
|
||
|
if (s->size >= s->max_size) {
|
||
|
return REG_ESPACE;
|
||
|
} else {
|
||
|
union tre_stack_item *new_buffer;
|
||
|
int new_size;
|
||
|
new_size = s->size + s->increment;
|
||
|
if (new_size > s->max_size) new_size = s->max_size;
|
||
|
new_buffer = realloc(s->stack, sizeof(*new_buffer) * new_size);
|
||
|
if (new_buffer == NULL) {
|
||
|
return REG_ESPACE;
|
||
|
}
|
||
|
assert(new_size > s->size);
|
||
|
s->size = new_size;
|
||
|
s->stack = new_buffer;
|
||
|
tre_stack_push(s, value);
|
||
|
}
|
||
|
}
|
||
|
return REG_OK;
|
||
|
}
|
||
|
|
||
|
#define define_pushf(typetag, type) \
|
||
|
declare_pushf(typetag, type) { \
|
||
|
union tre_stack_item item; \
|
||
|
item.typetag##_value = value; \
|
||
|
return tre_stack_push(s, item); \
|
||
|
}
|
||
|
|
||
|
define_pushf(int, int) define_pushf(voidptr, void *)
|
||
|
#define define_popf(typetag, type) \
|
||
|
declare_popf(typetag, type) { return s->stack[--s->ptr].typetag##_value; }
|
||
|
|
||
|
define_popf(int, int) define_popf(voidptr, void *)
|
||
|
|
||
|
/***********************************************************************
|
||
|
from tre-parse.c and tre-parse.h
|
||
|
***********************************************************************/
|
||
|
|
||
|
/* Parse context. */
|
||
|
typedef struct {
|
||
|
/* Memory allocator. The AST is allocated using this. */
|
||
|
tre_mem_t mem;
|
||
|
/* Stack used for keeping track of regexp syntax. */
|
||
|
tre_stack_t *stack;
|
||
|
/* The parsed node after a parse function returns. */
|
||
|
tre_ast_node_t *n;
|
||
|
/* Position in the regexp pattern after a parse function returns. */
|
||
|
const char *s;
|
||
|
/* The first character of the last subexpression parsed. */
|
||
|
const char *start;
|
||
|
/* Current submatch ID. */
|
||
|
int submatch_id;
|
||
|
/* Current position (number of literal). */
|
||
|
int position;
|
||
|
/* The highest back reference or -1 if none seen so far. */
|
||
|
int max_backref;
|
||
|
/* Compilation flags. */
|
||
|
int cflags;
|
||
|
} tre_parse_ctx_t;
|
||
|
|
||
|
/* Some macros for expanding \w, \s, etc. */
|
||
|
static const struct {
|
||
|
char c;
|
||
|
const char *expansion;
|
||
|
} tre_macros[] = {{'t', "\t"},
|
||
|
{'n', "\n"},
|
||
|
{'r', "\r"},
|
||
|
{'f', "\f"},
|
||
|
{'a', "\a"},
|
||
|
{'e', "\033"},
|
||
|
{'w', "[[:alnum:]_]"},
|
||
|
{'W', "[^[:alnum:]_]"},
|
||
|
{'s', "[[:space:]]"},
|
||
|
{'S', "[^[:space:]]"},
|
||
|
{'d', "[[:digit:]]"},
|
||
|
{'D', "[^[:digit:]]"},
|
||
|
{0, 0}};
|
||
|
|
||
|
/* Expands a macro delimited by `regex' and `regex_end' to `buf', which
|
||
|
must have at least `len' items. Sets buf[0] to zero if the there
|
||
|
is no match in `tre_macros'. */
|
||
|
static const char *tre_expand_macro(const char *s) {
|
||
|
int i;
|
||
|
for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++)
|
||
|
;
|
||
|
return tre_macros[i].expansion;
|
||
|
}
|
||
|
|
||
|
static int tre_compare_lit(const void *a, const void *b) {
|
||
|
const tre_literal_t *const *la = a;
|
||
|
const tre_literal_t *const *lb = b;
|
||
|
/* assumes the range of valid code_min is < INT_MAX */
|
||
|
return la[0]->code_min - lb[0]->code_min;
|
||
|
}
|
||
|
|
||
|
struct literals {
|
||
|
tre_mem_t mem;
|
||
|
tre_literal_t **a;
|
||
|
int len;
|
||
|
int cap;
|
||
|
};
|
||
|
|
||
|
static tre_literal_t *tre_new_lit(struct literals *p) {
|
||
|
tre_literal_t **a;
|
||
|
if (p->len >= p->cap) {
|
||
|
if (p->cap >= 1 << 15) return 0;
|
||
|
p->cap *= 2;
|
||
|
a = realloc(p->a, p->cap * sizeof *p->a);
|
||
|
if (!a) return 0;
|
||
|
p->a = a;
|
||
|
}
|
||
|
a = p->a + p->len++;
|
||
|
*a = tre_mem_calloc(p->mem, sizeof **a);
|
||
|
return *a;
|
||
|
}
|
||
|
|
||
|
static int add_icase_literals(struct literals *ls, int min, int max) {
|
||
|
tre_literal_t *lit;
|
||
|
int b, e, c;
|
||
|
for (c = min; c <= max;) {
|
||
|
/* assumes islower(c) and isupper(c) are exclusive
|
||
|
and toupper(c)!=c if islower(c).
|
||
|
multiple opposite case characters are not supported */
|
||
|
if (tre_islower(c)) {
|
||
|
b = e = tre_toupper(c);
|
||
|
for (c++, e++; c <= max; c++, e++)
|
||
|
if (tre_toupper(c) != e) break;
|
||
|
} else if (tre_isupper(c)) {
|
||
|
b = e = tre_tolower(c);
|
||
|
for (c++, e++; c <= max; c++, e++)
|
||
|
if (tre_tolower(c) != e) break;
|
||
|
} else {
|
||
|
c++;
|
||
|
continue;
|
||
|
}
|
||
|
lit = tre_new_lit(ls);
|
||
|
if (!lit) return -1;
|
||
|
lit->code_min = b;
|
||
|
lit->code_max = e - 1;
|
||
|
lit->position = -1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Maximum number of character classes in a negated bracket expression. */
|
||
|
#define MAX_NEG_CLASSES 64
|
||
|
|
||
|
struct neg {
|
||
|
int negate;
|
||
|
int len;
|
||
|
tre_ctype_t a[MAX_NEG_CLASSES];
|
||
|
};
|
||
|
|
||
|
// TODO: parse bracket into a set of non-overlapping [lo,hi] ranges
|
||
|
|
||
|
/*
|
||
|
bracket grammar:
|
||
|
Bracket = '[' List ']' | '[^' List ']'
|
||
|
List = Term | List Term
|
||
|
Term = Char | Range | Chclass | Eqclass
|
||
|
Range = Char '-' Char | Char '-' '-'
|
||
|
Char = Coll | coll_single
|
||
|
Meta = ']' | '-'
|
||
|
Coll = '[.' coll_single '.]' | '[.' coll_multi '.]' | '[.' Meta '.]'
|
||
|
Eqclass = '[=' coll_single '=]' | '[=' coll_multi '=]'
|
||
|
Chclass = '[:' class ':]'
|
||
|
|
||
|
coll_single is a single char collating element but it can be
|
||
|
'-' only at the beginning or end of a List and
|
||
|
']' only at the beginning of a List and
|
||
|
'^' anywhere except after the openning '['
|
||
|
*/
|
||
|
|
||
|
static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s,
|
||
|
struct literals *ls, struct neg *neg) {
|
||
|
const char *start = s;
|
||
|
tre_ctype_t class;
|
||
|
int min, max;
|
||
|
wchar_t wc;
|
||
|
int len;
|
||
|
|
||
|
for (;;) {
|
||
|
class = 0;
|
||
|
len = mbtowc(&wc, s, -1);
|
||
|
if (len <= 0) return *s ? REG_BADPAT : REG_EBRACK;
|
||
|
if (*s == ']' && s != start) {
|
||
|
ctx->s = s + 1;
|
||
|
return REG_OK;
|
||
|
}
|
||
|
if (*s == '-' && s != start && s[1] != ']' &&
|
||
|
/* extension: [a-z--@] is accepted as [a-z]|[--@] */
|
||
|
(s[1] != '-' || s[2] == ']'))
|
||
|
return REG_ERANGE;
|
||
|
if (*s == '[' && (s[1] == '.' || s[1] == '='))
|
||
|
/* collating symbols and equivalence classes are not supported */
|
||
|
return REG_ECOLLATE;
|
||
|
if (*s == '[' && s[1] == ':') {
|
||
|
char tmp[CHARCLASS_NAME_MAX + 1];
|
||
|
s += 2;
|
||
|
for (len = 0; len < CHARCLASS_NAME_MAX && s[len]; len++) {
|
||
|
if (s[len] == ':') {
|
||
|
memcpy(tmp, s, len);
|
||
|
tmp[len] = 0;
|
||
|
class = tre_ctype(tmp);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!class || s[len + 1] != ']') return REG_ECTYPE;
|
||
|
min = 0;
|
||
|
max = TRE_CHAR_MAX;
|
||
|
s += len + 2;
|
||
|
} else {
|
||
|
min = max = wc;
|
||
|
s += len;
|
||
|
if (*s == '-' && s[1] != ']') {
|
||
|
s++;
|
||
|
len = mbtowc(&wc, s, -1);
|
||
|
max = wc;
|
||
|
/* XXX - Should use collation order instead of
|
||
|
encoding values in character ranges. */
|
||
|
if (len <= 0 || min > max) return REG_ERANGE;
|
||
|
s += len;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (class && neg->negate) {
|
||
|
if (neg->len >= MAX_NEG_CLASSES) return REG_ESPACE;
|
||
|
neg->a[neg->len++] = class;
|
||
|
} else {
|
||
|
tre_literal_t *lit = tre_new_lit(ls);
|
||
|
if (!lit) return REG_ESPACE;
|
||
|
lit->code_min = min;
|
||
|
lit->code_max = max;
|
||
|
lit->class = class;
|
||
|
lit->position = -1;
|
||
|
|
||
|
/* Add opposite-case codepoints if REG_ICASE is present.
|
||
|
It seems that POSIX requires that bracket negation
|
||
|
should happen before case-folding, but most practical
|
||
|
implementations do it the other way around. Changing
|
||
|
the order would need efficient representation of
|
||
|
case-fold ranges and bracket range sets even with
|
||
|
simple patterns so this is ok for now. */
|
||
|
if (ctx->cflags & REG_ICASE && !class)
|
||
|
if (add_icase_literals(ls, min, max)) return REG_ESPACE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s) {
|
||
|
int i, max, min, negmax, negmin;
|
||
|
tre_ast_node_t *node = 0, *n;
|
||
|
tre_ctype_t *nc = 0;
|
||
|
tre_literal_t *lit;
|
||
|
struct literals ls;
|
||
|
struct neg neg;
|
||
|
reg_errcode_t err;
|
||
|
|
||
|
ls.mem = ctx->mem;
|
||
|
ls.len = 0;
|
||
|
ls.cap = 32;
|
||
|
ls.a = malloc(ls.cap * sizeof *ls.a);
|
||
|
if (!ls.a) return REG_ESPACE;
|
||
|
neg.len = 0;
|
||
|
neg.negate = *s == '^';
|
||
|
if (neg.negate) s++;
|
||
|
|
||
|
err = parse_bracket_terms(ctx, s, &ls, &neg);
|
||
|
if (err != REG_OK) goto parse_bracket_done;
|
||
|
|
||
|
if (neg.negate) {
|
||
|
/*
|
||
|
* With REG_NEWLINE, POSIX requires that newlines are not matched by
|
||
|
* any form of a non-matching list.
|
||
|
*/
|
||
|
if (ctx->cflags & REG_NEWLINE) {
|
||
|
lit = tre_new_lit(&ls);
|
||
|
if (!lit) {
|
||
|
err = REG_ESPACE;
|
||
|
goto parse_bracket_done;
|
||
|
}
|
||
|
lit->code_min = '\n';
|
||
|
lit->code_max = '\n';
|
||
|
lit->position = -1;
|
||
|
}
|
||
|
/* Sort the array if we need to negate it. */
|
||
|
qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit);
|
||
|
/* extra lit for the last negated range */
|
||
|
lit = tre_new_lit(&ls);
|
||
|
if (!lit) {
|
||
|
err = REG_ESPACE;
|
||
|
goto parse_bracket_done;
|
||
|
}
|
||
|
lit->code_min = TRE_CHAR_MAX + 1;
|
||
|
lit->code_max = TRE_CHAR_MAX + 1;
|
||
|
lit->position = -1;
|
||
|
/* negated classes */
|
||
|
if (neg.len) {
|
||
|
nc = tre_mem_alloc(ctx->mem, (neg.len + 1) * sizeof *neg.a);
|
||
|
if (!nc) {
|
||
|
err = REG_ESPACE;
|
||
|
goto parse_bracket_done;
|
||
|
}
|
||
|
memcpy(nc, neg.a, neg.len * sizeof *neg.a);
|
||
|
nc[neg.len] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Build a union of the items in the array, negated if necessary. */
|
||
|
negmax = negmin = 0;
|
||
|
for (i = 0; i < ls.len; i++) {
|
||
|
lit = ls.a[i];
|
||
|
min = lit->code_min;
|
||
|
max = lit->code_max;
|
||
|
if (neg.negate) {
|
||
|
if (min <= negmin) {
|
||
|
/* Overlap. */
|
||
|
negmin = MAX(max + 1, negmin);
|
||
|
continue;
|
||
|
}
|
||
|
negmax = min - 1;
|
||
|
lit->code_min = negmin;
|
||
|
lit->code_max = negmax;
|
||
|
negmin = max + 1;
|
||
|
}
|
||
|
lit->position = ctx->position;
|
||
|
lit->neg_classes = nc;
|
||
|
n = tre_ast_new_node(ctx->mem, LITERAL, lit);
|
||
|
node = tre_ast_new_union(ctx->mem, node, n);
|
||
|
if (!node) {
|
||
|
err = REG_ESPACE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
parse_bracket_done:
|
||
|
free(ls.a), ls.a = NULL;
|
||
|
ctx->position++;
|
||
|
ctx->n = node;
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static const char *parse_dup_count(const char *s, int *n) {
|
||
|
*n = -1;
|
||
|
if (!isdigit(*s)) return s;
|
||
|
*n = 0;
|
||
|
for (;;) {
|
||
|
*n = 10 * *n + (*s - '0');
|
||
|
s++;
|
||
|
if (!isdigit(*s) || *n > RE_DUP_MAX) break;
|
||
|
}
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
static const char *parse_dup(const char *s, int ere, int *pmin, int *pmax) {
|
||
|
int min, max;
|
||
|
|
||
|
s = parse_dup_count(s, &min);
|
||
|
if (*s == ',')
|
||
|
s = parse_dup_count(s + 1, &max);
|
||
|
else
|
||
|
max = min;
|
||
|
|
||
|
if ((max < min && max >= 0) || max > RE_DUP_MAX || min > RE_DUP_MAX ||
|
||
|
min < 0 || (!ere && *s++ != '\\') || *s++ != '}')
|
||
|
return 0;
|
||
|
*pmin = min;
|
||
|
*pmax = max;
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
static int hexval(unsigned c) {
|
||
|
if (c - '0' < 10) return c - '0';
|
||
|
c |= 32;
|
||
|
if (c - 'a' < 6) return c - 'a' + 10;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node,
|
||
|
int subid) {
|
||
|
if (node->submatch_id >= 0) {
|
||
|
tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
||
|
if (!n) return REG_ESPACE;
|
||
|
n = tre_ast_new_catenation(ctx->mem, n, node);
|
||
|
if (!n) return REG_ESPACE;
|
||
|
n->num_submatches = node->num_submatches;
|
||
|
node = n;
|
||
|
}
|
||
|
node->submatch_id = subid;
|
||
|
node->num_submatches++;
|
||
|
ctx->n = node;
|
||
|
return REG_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
BRE grammar:
|
||
|
Regex = Branch | '^' | '$' | '^$' | '^' Branch | Branch '$' | '^'
|
||
|
Branch '$' Branch = Atom | Branch Atom Atom = char | quoted_char | '.'
|
||
|
| Bracket | Atom Dup | '\(' Branch '\)' | back_ref Dup = '*' | '\{'
|
||
|
Count '\}' | '\{' Count ',\}' | '\{' Count ',' Count '\}'
|
||
|
|
||
|
(leading ^ and trailing $ in a sub expr may be an anchor or literal as well)
|
||
|
|
||
|
ERE grammar:
|
||
|
Regex = Branch | Regex '|' Branch
|
||
|
Branch = Atom | Branch Atom
|
||
|
Atom = char | quoted_char | '.' | Bracket | Atom Dup | '(' Regex
|
||
|
')' | '^' | '$' Dup = '*' | '+' | '?' | '{' Count '}' | '{'
|
||
|
Count ',}' | '{' Count ',' Count '}'
|
||
|
|
||
|
(a*+?, ^*, $+, \X, {, (|a) are unspecified)
|
||
|
*/
|
||
|
|
||
|
static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s) {
|
||
|
int len, ere = ctx->cflags & REG_EXTENDED;
|
||
|
const char *p;
|
||
|
tre_ast_node_t *node;
|
||
|
wchar_t wc;
|
||
|
switch (*s) {
|
||
|
case '[':
|
||
|
return parse_bracket(ctx, s + 1);
|
||
|
case '\\':
|
||
|
p = tre_expand_macro(s + 1);
|
||
|
if (p) {
|
||
|
/* assume \X expansion is a single atom */
|
||
|
reg_errcode_t err = parse_atom(ctx, p);
|
||
|
ctx->s = s + 2;
|
||
|
return err;
|
||
|
}
|
||
|
/* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */
|
||
|
switch (*++s) {
|
||
|
case 0:
|
||
|
return REG_EESCAPE;
|
||
|
case 'b':
|
||
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1);
|
||
|
break;
|
||
|
case 'B':
|
||
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1);
|
||
|
break;
|
||
|
case '<':
|
||
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1);
|
||
|
break;
|
||
|
case '>':
|
||
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1);
|
||
|
break;
|
||
|
case 'x':
|
||
|
s++;
|
||
|
int i, v = 0, c;
|
||
|
len = 2;
|
||
|
if (*s == '{') {
|
||
|
len = 8;
|
||
|
s++;
|
||
|
}
|
||
|
for (i = 0; i < len && v < 0x110000; i++) {
|
||
|
c = hexval(s[i]);
|
||
|
if (c < 0) break;
|
||
|
v = 16 * v + c;
|
||
|
}
|
||
|
s += i;
|
||
|
if (len == 8) {
|
||
|
if (*s != '}') return REG_EBRACE;
|
||
|
s++;
|
||
|
}
|
||
|
node = tre_ast_new_literal(ctx->mem, v, v, ctx->position++);
|
||
|
s--;
|
||
|
break;
|
||
|
case '{':
|
||
|
case '+':
|
||
|
case '?':
|
||
|
/* extension: treat \+, \? as repetitions in BRE */
|
||
|
/* reject repetitions after empty expression in BRE */
|
||
|
if (!ere) return REG_BADRPT;
|
||
|
/* fallthrough */
|
||
|
case '|':
|
||
|
/* extension: treat \| as alternation in BRE */
|
||
|
if (!ere) {
|
||
|
node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
||
|
s--;
|
||
|
goto end;
|
||
|
}
|
||
|
/* fallthrough */
|
||
|
default:
|
||
|
if (!ere && (unsigned)*s - '1' < 9) {
|
||
|
/* back reference */
|
||
|
int val = *s - '0';
|
||
|
node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position++);
|
||
|
ctx->max_backref = MAX(val, ctx->max_backref);
|
||
|
} else {
|
||
|
/* extension: accept unknown escaped char
|
||
|
as a literal */
|
||
|
goto parse_literal;
|
||
|
}
|
||
|
}
|
||
|
s++;
|
||
|
break;
|
||
|
case '.':
|
||
|
if (ctx->cflags & REG_NEWLINE) {
|
||
|
tre_ast_node_t *tmp1, *tmp2;
|
||
|
tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n' - 1, ctx->position++);
|
||
|
tmp2 = tre_ast_new_literal(ctx->mem, '\n' + 1, TRE_CHAR_MAX,
|
||
|
ctx->position++);
|
||
|
if (tmp1 && tmp2)
|
||
|
node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
||
|
else
|
||
|
node = 0;
|
||
|
} else {
|
||
|
node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++);
|
||
|
}
|
||
|
s++;
|
||
|
break;
|
||
|
case '^':
|
||
|
/* '^' has a special meaning everywhere in EREs, and at beginning of BRE.
|
||
|
*/
|
||
|
if (!ere && s != ctx->start) goto parse_literal;
|
||
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1);
|
||
|
s++;
|
||
|
break;
|
||
|
case '$':
|
||
|
/* '$' is special everywhere in EREs, and at the end of a BRE
|
||
|
* subexpression. */
|
||
|
if (!ere && s[1] && (s[1] != '\\' || (s[2] != ')' && s[2] != '|')))
|
||
|
goto parse_literal;
|
||
|
node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1);
|
||
|
s++;
|
||
|
break;
|
||
|
case '*':
|
||
|
case '{':
|
||
|
case '+':
|
||
|
case '?':
|
||
|
/* reject repetitions after empty expression in ERE */
|
||
|
if (ere) return REG_BADRPT;
|
||
|
/* fallthrough */
|
||
|
case '|':
|
||
|
if (!ere) goto parse_literal;
|
||
|
/* fallthrough */
|
||
|
case 0:
|
||
|
node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
||
|
break;
|
||
|
default:
|
||
|
parse_literal:
|
||
|
len = mbtowc(&wc, s, -1);
|
||
|
if (len < 0) return REG_BADPAT;
|
||
|
if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) {
|
||
|
tre_ast_node_t *tmp1, *tmp2;
|
||
|
/* multiple opposite case characters are not supported */
|
||
|
tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(wc),
|
||
|
ctx->position);
|
||
|
tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(wc),
|
||
|
ctx->position);
|
||
|
if (tmp1 && tmp2)
|
||
|
node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
||
|
else
|
||
|
node = 0;
|
||
|
} else {
|
||
|
node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position);
|
||
|
}
|
||
|
ctx->position++;
|
||
|
s += len;
|
||
|
break;
|
||
|
}
|
||
|
end:
|
||
|
if (!node) return REG_ESPACE;
|
||
|
ctx->n = node;
|
||
|
ctx->s = s;
|
||
|
return REG_OK;
|
||
|
}
|
||
|
|
||
|
#define PUSHPTR(err, s, v) \
|
||
|
do { \
|
||
|
if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) return err; \
|
||
|
} while (0)
|
||
|
|
||
|
#define PUSHINT(err, s, v) \
|
||
|
do { \
|
||
|
if ((err = tre_stack_push_int(s, v)) != REG_OK) return err; \
|
||
|
} while (0)
|
||
|
|
||
|
static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx) {
|
||
|
tre_ast_node_t *nbranch = 0, *nunion = 0;
|
||
|
int ere = ctx->cflags & REG_EXTENDED;
|
||
|
const char *s = ctx->start;
|
||
|
int subid = 0;
|
||
|
int depth = 0;
|
||
|
reg_errcode_t err;
|
||
|
tre_stack_t *stack = ctx->stack;
|
||
|
|
||
|
PUSHINT(err, stack, subid++);
|
||
|
for (;;) {
|
||
|
if ((!ere && *s == '\\' && s[1] == '(') || (ere && *s == '(')) {
|
||
|
PUSHPTR(err, stack, nunion);
|
||
|
PUSHPTR(err, stack, nbranch);
|
||
|
PUSHINT(err, stack, subid++);
|
||
|
s++;
|
||
|
if (!ere) s++;
|
||
|
depth++;
|
||
|
nbranch = nunion = 0;
|
||
|
ctx->start = s;
|
||
|
continue;
|
||
|
}
|
||
|
if ((!ere && *s == '\\' && s[1] == ')') || (ere && *s == ')' && depth)) {
|
||
|
ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
||
|
if (!ctx->n) return REG_ESPACE;
|
||
|
} else {
|
||
|
err = parse_atom(ctx, s);
|
||
|
if (err != REG_OK) return err;
|
||
|
s = ctx->s;
|
||
|
}
|
||
|
|
||
|
parse_iter:
|
||
|
for (;;) {
|
||
|
int min, max;
|
||
|
|
||
|
if (*s != '\\' && *s != '*') {
|
||
|
if (!ere) break;
|
||
|
if (*s != '+' && *s != '?' && *s != '{') break;
|
||
|
}
|
||
|
if (*s == '\\' && ere) break;
|
||
|
/* extension: treat \+, \? as repetitions in BRE */
|
||
|
if (*s == '\\' && s[1] != '+' && s[1] != '?' && s[1] != '{') break;
|
||
|
if (*s == '\\') s++;
|
||
|
|
||
|
/* handle ^* at the start of a BRE. */
|
||
|
if (!ere && s == ctx->start + 1 && s[-1] == '^') break;
|
||
|
|
||
|
/* extension: multiple consecutive *+?{,} is unspecified,
|
||
|
but (a+)+ has to be supported so accepting a++ makes
|
||
|
sense, note however that the RE_DUP_MAX limit can be
|
||
|
circumvented: (a{255}){255} uses a lot of memory.. */
|
||
|
if (*s == '{') {
|
||
|
s = parse_dup(s + 1, ere, &min, &max);
|
||
|
if (!s) return REG_BADBR;
|
||
|
} else {
|
||
|
min = 0;
|
||
|
max = -1;
|
||
|
if (*s == '+') min = 1;
|
||
|
if (*s == '?') max = 1;
|
||
|
s++;
|
||
|
}
|
||
|
if (max == 0)
|
||
|
ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
||
|
else
|
||
|
ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
|
||
|
if (!ctx->n) return REG_ESPACE;
|
||
|
}
|
||
|
|
||
|
nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n);
|
||
|
if ((ere && *s == '|') || (ere && *s == ')' && depth) ||
|
||
|
(!ere && *s == '\\' && s[1] == ')') ||
|
||
|
/* extension: treat \| as alternation in BRE */
|
||
|
(!ere && *s == '\\' && s[1] == '|') || !*s) {
|
||
|
/* extension: empty branch is unspecified (), (|a), (a|)
|
||
|
here they are not rejected but match on empty string */
|
||
|
int c = *s;
|
||
|
nunion = tre_ast_new_union(ctx->mem, nunion, nbranch);
|
||
|
nbranch = 0;
|
||
|
|
||
|
if (c == '\\' && s[1] == '|') {
|
||
|
s += 2;
|
||
|
ctx->start = s;
|
||
|
} else if (c == '|') {
|
||
|
s++;
|
||
|
ctx->start = s;
|
||
|
} else {
|
||
|
if (c == '\\') {
|
||
|
if (!depth) return REG_EPAREN;
|
||
|
s += 2;
|
||
|
} else if (c == ')')
|
||
|
s++;
|
||
|
depth--;
|
||
|
err = marksub(ctx, nunion, tre_stack_pop_int(stack));
|
||
|
if (err != REG_OK) return err;
|
||
|
if (!c && depth < 0) {
|
||
|
ctx->submatch_id = subid;
|
||
|
return REG_OK;
|
||
|
}
|
||
|
if (!c || depth < 0) return REG_EPAREN;
|
||
|
nbranch = tre_stack_pop_voidptr(stack);
|
||
|
nunion = tre_stack_pop_voidptr(stack);
|
||
|
goto parse_iter;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/***********************************************************************
|
||
|
from tre-compile.c
|
||
|
***********************************************************************/
|
||
|
|
||
|
/*
|
||
|
TODO:
|
||
|
- Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive
|
||
|
function calls.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
Algorithms to setup tags so that submatch addressing can be done.
|
||
|
*/
|
||
|
|
||
|
/* Inserts a catenation node to the root of the tree given in `node'.
|
||
|
As the left child a new tag with number `tag_id' to `node' is added,
|
||
|
and the right child is the old root. */
|
||
|
static reg_errcode_t tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node,
|
||
|
int tag_id) {
|
||
|
tre_catenation_t *c;
|
||
|
|
||
|
c = tre_mem_alloc(mem, sizeof(*c));
|
||
|
if (c == NULL) return REG_ESPACE;
|
||
|
c->left = tre_ast_new_literal(mem, TAG, tag_id, -1);
|
||
|
if (c->left == NULL) return REG_ESPACE;
|
||
|
c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
|
||
|
if (c->right == NULL) return REG_ESPACE;
|
||
|
|
||
|
c->right->obj = node->obj;
|
||
|
c->right->type = node->type;
|
||
|
c->right->nullable = -1;
|
||
|
c->right->submatch_id = -1;
|
||
|
c->right->firstpos = NULL;
|
||
|
c->right->lastpos = NULL;
|
||
|
c->right->num_tags = 0;
|
||
|
c->right->num_submatches = 0;
|
||
|
node->obj = c;
|
||
|
node->type = CATENATION;
|
||
|
return REG_OK;
|
||
|
}
|
||
|
|
||
|
/* Inserts a catenation node to the root of the tree given in `node'.
|
||
|
As the right child a new tag with number `tag_id' to `node' is added,
|
||
|
and the left child is the old root. */
|
||
|
static reg_errcode_t tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node,
|
||
|
int tag_id) {
|
||
|
tre_catenation_t *c;
|
||
|
|
||
|
c = tre_mem_alloc(mem, sizeof(*c));
|
||
|
if (c == NULL) return REG_ESPACE;
|
||
|
c->right = tre_ast_new_literal(mem, TAG, tag_id, -1);
|
||
|
if (c->right == NULL) return REG_ESPACE;
|
||
|
c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t));
|
||
|
if (c->left == NULL) return REG_ESPACE;
|
||
|
|
||
|
c->left->obj = node->obj;
|
||
|
c->left->type = node->type;
|
||
|
c->left->nullable = -1;
|
||
|
c->left->submatch_id = -1;
|
||
|
c->left->firstpos = NULL;
|
||
|
c->left->lastpos = NULL;
|
||
|
c->left->num_tags = 0;
|
||
|
c->left->num_submatches = 0;
|
||
|
node->obj = c;
|
||
|
node->type = CATENATION;
|
||
|
return REG_OK;
|
||
|
}
|
||
|
|
||
|
typedef enum {
|
||
|
ADDTAGS_RECURSE,
|
||
|
ADDTAGS_AFTER_ITERATION,
|
||
|
ADDTAGS_AFTER_UNION_LEFT,
|
||
|
ADDTAGS_AFTER_UNION_RIGHT,
|
||
|
ADDTAGS_AFTER_CAT_LEFT,
|
||
|
ADDTAGS_AFTER_CAT_RIGHT,
|
||
|
ADDTAGS_SET_SUBMATCH_END
|
||
|
} tre_addtags_symbol_t;
|
||
|
|
||
|
typedef struct {
|
||
|
int tag;
|
||
|
int next_tag;
|
||
|
} tre_tag_states_t;
|
||
|
|
||
|
/* Go through `regset' and set submatch data for submatches that are
|
||
|
using this tag. */
|
||
|
static void tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; regset[i] >= 0; i++) {
|
||
|
int id = regset[i] / 2;
|
||
|
int start = !(regset[i] % 2);
|
||
|
if (start)
|
||
|
tnfa->submatch_data[id].so_tag = tag;
|
||
|
else
|
||
|
tnfa->submatch_data[id].eo_tag = tag;
|
||
|
}
|
||
|
regset[0] = -1;
|
||
|
}
|
||
|
|
||
|
/* Adds tags to appropriate locations in the parse tree in `tree', so that
|
||
|
subexpressions marked for submatch addressing can be traced. */
|
||
|
static reg_errcode_t tre_add_tags(tre_mem_t mem, tre_stack_t *stack,
|
||
|
tre_ast_node_t *tree, tre_tnfa_t *tnfa) {
|
||
|
reg_errcode_t status = REG_OK;
|
||
|
tre_addtags_symbol_t symbol;
|
||
|
tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */
|
||
|
int bottom = tre_stack_num_objects(stack);
|
||
|
/* True for first pass (counting number of needed tags) */
|
||
|
int first_pass = (mem == NULL || tnfa == NULL);
|
||
|
int *regset, *orig_regset;
|
||
|
int num_tags = 0; /* Total number of tags. */
|
||
|
int num_minimals = 0; /* Number of special minimal tags. */
|
||
|
int tag = 0; /* The tag that is to be added next. */
|
||
|
int next_tag = 1; /* Next tag to use after this one. */
|
||
|
int *parents; /* Stack of submatches the current submatch is
|
||
|
contained in. */
|
||
|
int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */
|
||
|
tre_tag_states_t *saved_states;
|
||
|
|
||
|
tre_tag_direction_t direction = TRE_TAG_MINIMIZE;
|
||
|
if (!first_pass) {
|
||
|
tnfa->end_tag = 0;
|
||
|
tnfa->minimal_tags[0] = -1;
|
||
|
}
|
||
|
|
||
|
regset = malloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2));
|
||
|
if (regset == NULL) return REG_ESPACE;
|
||
|
regset[0] = -1;
|
||
|
orig_regset = regset;
|
||
|
|
||
|
parents = malloc(sizeof(*parents) * (tnfa->num_submatches + 1));
|
||
|
if (parents == NULL) {
|
||
|
free(regset), regset = NULL;
|
||
|
return REG_ESPACE;
|
||
|
}
|
||
|
parents[0] = -1;
|
||
|
|
||
|
saved_states = malloc(sizeof(*saved_states) * (tnfa->num_submatches + 1));
|
||
|
if (saved_states == NULL) {
|
||
|
free(regset), regset = NULL;
|
||
|
free(parents), parents = NULL;
|
||
|
return REG_ESPACE;
|
||
|
} else {
|
||
|
unsigned int i;
|
||
|
for (i = 0; i <= tnfa->num_submatches; i++) saved_states[i].tag = -1;
|
||
|
}
|
||
|
|
||
|
STACK_PUSH(stack, voidptr, node);
|
||
|
STACK_PUSH(stack, int, ADDTAGS_RECURSE);
|
||
|
|
||
|
while (tre_stack_num_objects(stack) > bottom) {
|
||
|
if (status != REG_OK) break;
|
||
|
|
||
|
symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
|
||
|
switch (symbol) {
|
||
|
case ADDTAGS_SET_SUBMATCH_END: {
|
||
|
int id = tre_stack_pop_int(stack);
|
||
|
int i;
|
||
|
|
||
|
/* Add end of this submatch to regset. */
|
||
|
for (i = 0; regset[i] >= 0; i++)
|
||
|
;
|
||
|
regset[i] = id * 2 + 1;
|
||
|
regset[i + 1] = -1;
|
||
|
|
||
|
/* Pop this submatch from the parents stack. */
|
||
|
for (i = 0; parents[i] >= 0; i++)
|
||
|
;
|
||
|
parents[i - 1] = -1;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case ADDTAGS_RECURSE:
|
||
|
node = tre_stack_pop_voidptr(stack);
|
||
|
|
||
|
if (node->submatch_id >= 0) {
|
||
|
int id = node->submatch_id;
|
||
|
int i;
|
||
|
|
||
|
/* Add start of this submatch to regset. */
|
||
|
for (i = 0; regset[i] >= 0; i++)
|
||
|
;
|
||
|
regset[i] = id * 2;
|
||
|
regset[i + 1] = -1;
|
||
|
|
||
|
if (!first_pass) {
|
||
|
for (i = 0; parents[i] >= 0; i++)
|
||
|
;
|
||
|
tnfa->submatch_data[id].parents = NULL;
|
||
|
if (i > 0) {
|
||
|
int *p = malloc(sizeof(*p) * (i + 1));
|
||
|
if (p == NULL) {
|
||
|
status = REG_ESPACE;
|
||
|
break;
|
||
|
}
|
||
|
assert(tnfa->submatch_data[id].parents == NULL);
|
||
|
tnfa->submatch_data[id].parents = p;
|
||
|
for (i = 0; parents[i] >= 0; i++) p[i] = parents[i];
|
||
|
p[i] = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Add end of this submatch to regset after processing this
|
||
|
node. */
|
||
|
STACK_PUSHX(stack, int, node->submatch_id);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
|
||
|
}
|
||
|
|
||
|
switch (node->type) {
|
||
|
case LITERAL: {
|
||
|
tre_literal_t *lit = node->obj;
|
||
|
|
||
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
|
||
|
int i;
|
||
|
if (regset[0] >= 0) {
|
||
|
/* Regset is not empty, so add a tag before the
|
||
|
literal or backref. */
|
||
|
if (!first_pass) {
|
||
|
status = tre_add_tag_left(mem, node, tag);
|
||
|
tnfa->tag_directions[tag] = direction;
|
||
|
if (minimal_tag >= 0) {
|
||
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
||
|
;
|
||
|
tnfa->minimal_tags[i] = tag;
|
||
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
||
|
tnfa->minimal_tags[i + 2] = -1;
|
||
|
minimal_tag = -1;
|
||
|
num_minimals++;
|
||
|
}
|
||
|
tre_purge_regset(regset, tnfa, tag);
|
||
|
} else {
|
||
|
node->num_tags = 1;
|
||
|
}
|
||
|
|
||
|
regset[0] = -1;
|
||
|
tag = next_tag;
|
||
|
num_tags++;
|
||
|
next_tag++;
|
||
|
}
|
||
|
} else {
|
||
|
assert(!IS_TAG(lit));
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case CATENATION: {
|
||
|
tre_catenation_t *cat = node->obj;
|
||
|
tre_ast_node_t *left = cat->left;
|
||
|
tre_ast_node_t *right = cat->right;
|
||
|
int reserved_tag = -1;
|
||
|
|
||
|
/* After processing right child. */
|
||
|
STACK_PUSHX(stack, voidptr, node);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);
|
||
|
|
||
|
/* Process right child. */
|
||
|
STACK_PUSHX(stack, voidptr, right);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
||
|
|
||
|
/* After processing left child. */
|
||
|
STACK_PUSHX(stack, int, next_tag + left->num_tags);
|
||
|
if (left->num_tags > 0 && right->num_tags > 0) {
|
||
|
/* Reserve the next tag to the right child. */
|
||
|
reserved_tag = next_tag;
|
||
|
next_tag++;
|
||
|
}
|
||
|
STACK_PUSHX(stack, int, reserved_tag);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);
|
||
|
|
||
|
/* Process left child. */
|
||
|
STACK_PUSHX(stack, voidptr, left);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
||
|
|
||
|
} break;
|
||
|
case ITERATION: {
|
||
|
tre_iteration_t *iter = node->obj;
|
||
|
|
||
|
if (first_pass) {
|
||
|
STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
|
||
|
} else {
|
||
|
STACK_PUSHX(stack, int, tag);
|
||
|
STACK_PUSHX(stack, int, iter->minimal);
|
||
|
}
|
||
|
STACK_PUSHX(stack, voidptr, node);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);
|
||
|
|
||
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
||
|
|
||
|
/* Regset is not empty, so add a tag here. */
|
||
|
if (regset[0] >= 0 || iter->minimal) {
|
||
|
if (!first_pass) {
|
||
|
int i;
|
||
|
status = tre_add_tag_left(mem, node, tag);
|
||
|
if (iter->minimal)
|
||
|
tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
|
||
|
else
|
||
|
tnfa->tag_directions[tag] = direction;
|
||
|
if (minimal_tag >= 0) {
|
||
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
||
|
;
|
||
|
tnfa->minimal_tags[i] = tag;
|
||
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
||
|
tnfa->minimal_tags[i + 2] = -1;
|
||
|
minimal_tag = -1;
|
||
|
num_minimals++;
|
||
|
}
|
||
|
tre_purge_regset(regset, tnfa, tag);
|
||
|
}
|
||
|
|
||
|
regset[0] = -1;
|
||
|
tag = next_tag;
|
||
|
num_tags++;
|
||
|
next_tag++;
|
||
|
}
|
||
|
direction = TRE_TAG_MINIMIZE;
|
||
|
} break;
|
||
|
case UNION: {
|
||
|
tre_union_t *uni = node->obj;
|
||
|
tre_ast_node_t *left = uni->left;
|
||
|
tre_ast_node_t *right = uni->right;
|
||
|
int left_tag;
|
||
|
int right_tag;
|
||
|
|
||
|
if (regset[0] >= 0) {
|
||
|
left_tag = next_tag;
|
||
|
right_tag = next_tag + 1;
|
||
|
} else {
|
||
|
left_tag = tag;
|
||
|
right_tag = next_tag;
|
||
|
}
|
||
|
|
||
|
/* After processing right child. */
|
||
|
STACK_PUSHX(stack, int, right_tag);
|
||
|
STACK_PUSHX(stack, int, left_tag);
|
||
|
STACK_PUSHX(stack, voidptr, regset);
|
||
|
STACK_PUSHX(stack, int, regset[0] >= 0);
|
||
|
STACK_PUSHX(stack, voidptr, node);
|
||
|
STACK_PUSHX(stack, voidptr, right);
|
||
|
STACK_PUSHX(stack, voidptr, left);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);
|
||
|
|
||
|
/* Process right child. */
|
||
|
STACK_PUSHX(stack, voidptr, right);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
||
|
|
||
|
/* After processing left child. */
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);
|
||
|
|
||
|
/* Process left child. */
|
||
|
STACK_PUSHX(stack, voidptr, left);
|
||
|
STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
||
|
|
||
|
/* Regset is not empty, so add a tag here. */
|
||
|
if (regset[0] >= 0) {
|
||
|
if (!first_pass) {
|
||
|
int i;
|
||
|
status = tre_add_tag_left(mem, node, tag);
|
||
|
tnfa->tag_directions[tag] = direction;
|
||
|
if (minimal_tag >= 0) {
|
||
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
||
|
;
|
||
|
tnfa->minimal_tags[i] = tag;
|
||
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
||
|
tnfa->minimal_tags[i + 2] = -1;
|
||
|
minimal_tag = -1;
|
||
|
num_minimals++;
|
||
|
}
|
||
|
tre_purge_regset(regset, tnfa, tag);
|
||
|
}
|
||
|
|
||
|
regset[0] = -1;
|
||
|
tag = next_tag;
|
||
|
num_tags++;
|
||
|
next_tag++;
|
||
|
}
|
||
|
|
||
|
if (node->num_submatches > 0) {
|
||
|
/* The next two tags are reserved for markers. */
|
||
|
next_tag++;
|
||
|
tag = next_tag;
|
||
|
next_tag++;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (node->submatch_id >= 0) {
|
||
|
int i;
|
||
|
/* Push this submatch on the parents stack. */
|
||
|
for (i = 0; parents[i] >= 0; i++)
|
||
|
;
|
||
|
parents[i] = node->submatch_id;
|
||
|
parents[i + 1] = -1;
|
||
|
}
|
||
|
|
||
|
break; /* end case: ADDTAGS_RECURSE */
|
||
|
|
||
|
case ADDTAGS_AFTER_ITERATION: {
|
||
|
int minimal = 0;
|
||
|
int enter_tag;
|
||
|
node = tre_stack_pop_voidptr(stack);
|
||
|
if (first_pass) {
|
||
|
node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags +
|
||
|
tre_stack_pop_int(stack);
|
||
|
minimal_tag = -1;
|
||
|
} else {
|
||
|
minimal = tre_stack_pop_int(stack);
|
||
|
enter_tag = tre_stack_pop_int(stack);
|
||
|
if (minimal) minimal_tag = enter_tag;
|
||
|
}
|
||
|
|
||
|
if (!first_pass) {
|
||
|
if (minimal)
|
||
|
direction = TRE_TAG_MINIMIZE;
|
||
|
else
|
||
|
direction = TRE_TAG_MAXIMIZE;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case ADDTAGS_AFTER_CAT_LEFT: {
|
||
|
int new_tag = tre_stack_pop_int(stack);
|
||
|
next_tag = tre_stack_pop_int(stack);
|
||
|
if (new_tag >= 0) {
|
||
|
tag = new_tag;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case ADDTAGS_AFTER_CAT_RIGHT:
|
||
|
node = tre_stack_pop_voidptr(stack);
|
||
|
if (first_pass)
|
||
|
node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags +
|
||
|
((tre_catenation_t *)node->obj)->right->num_tags;
|
||
|
break;
|
||
|
|
||
|
case ADDTAGS_AFTER_UNION_LEFT:
|
||
|
/* Lift the bottom of the `regset' array so that when processing
|
||
|
the right operand the items currently in the array are
|
||
|
invisible. The original bottom was saved at ADDTAGS_UNION and
|
||
|
will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */
|
||
|
while (*regset >= 0) regset++;
|
||
|
break;
|
||
|
|
||
|
case ADDTAGS_AFTER_UNION_RIGHT: {
|
||
|
int added_tags, tag_left, tag_right;
|
||
|
tre_ast_node_t *left = tre_stack_pop_voidptr(stack);
|
||
|
tre_ast_node_t *right = tre_stack_pop_voidptr(stack);
|
||
|
node = tre_stack_pop_voidptr(stack);
|
||
|
added_tags = tre_stack_pop_int(stack);
|
||
|
if (first_pass) {
|
||
|
node->num_tags = ((tre_union_t *)node->obj)->left->num_tags +
|
||
|
((tre_union_t *)node->obj)->right->num_tags +
|
||
|
added_tags + ((node->num_submatches > 0) ? 2 : 0);
|
||
|
}
|
||
|
regset = tre_stack_pop_voidptr(stack);
|
||
|
tag_left = tre_stack_pop_int(stack);
|
||
|
tag_right = tre_stack_pop_int(stack);
|
||
|
|
||
|
/* Add tags after both children, the left child gets a smaller
|
||
|
tag than the right child. This guarantees that we prefer
|
||
|
the left child over the right child. */
|
||
|
/* XXX - This is not always necessary (if the children have
|
||
|
tags which must be seen for every match of that child). */
|
||
|
/* XXX - Check if this is the only place where tre_add_tag_right
|
||
|
is used. If so, use tre_add_tag_left (putting the tag before
|
||
|
the child as opposed after the child) and throw away
|
||
|
tre_add_tag_right. */
|
||
|
if (node->num_submatches > 0) {
|
||
|
if (!first_pass) {
|
||
|
status = tre_add_tag_right(mem, left, tag_left);
|
||
|
tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
|
||
|
if (status == REG_OK)
|
||
|
status = tre_add_tag_right(mem, right, tag_right);
|
||
|
tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
|
||
|
}
|
||
|
num_tags += 2;
|
||
|
}
|
||
|
direction = TRE_TAG_MAXIMIZE;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
assert(0);
|
||
|
break;
|
||
|
|
||
|
} /* end switch(symbol) */
|
||
|
} /* end while(tre_stack_num_objects(stack) > bottom) */
|
||
|
|
||
|
if (!first_pass) tre_purge_regset(regset, tnfa, tag);
|
||
|
|
||
|
if (!first_pass && minimal_tag >= 0) {
|
||
|
int i;
|
||
|
for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
||
|
;
|
||
|
tnfa->minimal_tags[i] = tag;
|
||
|
tnfa->minimal_tags[i + 1] = minimal_tag;
|
||
|
tnfa->minimal_tags[i + 2] = -1;
|
||
|
minimal_tag = -1;
|
||
|
num_minimals++;
|
||
|
}
|
||
|
|
||
|
assert(tree->num_tags == num_tags);
|
||
|
tnfa->end_tag = num_tags;
|
||
|
tnfa->num_tags = num_tags;
|
||
|
tnfa->num_minimals = num_minimals;
|
||
|
free(orig_regset), orig_regset = NULL;
|
||
|
free(parents), parents = NULL;
|
||
|
free(saved_states), saved_states = NULL;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
AST to TNFA compilation routines.
|
||
|
*/
|
||
|
|
||
|
typedef enum { COPY_RECURSE, COPY_SET_RESULT_PTR } tre_copyast_symbol_t;
|
||
|
|
||
|
/* Flags for tre_copy_ast(). */
|
||
|
#define COPY_REMOVE_TAGS 1
|
||
|
#define COPY_MAXIMIZE_FIRST_TAG 2
|
||
|
|
||
|
static reg_errcode_t tre_copy_ast(tre_mem_t mem, tre_stack_t *stack,
|
||
|
tre_ast_node_t *ast, int flags, int *pos_add,
|
||
|
tre_tag_direction_t *tag_directions,
|
||
|
tre_ast_node_t **copy, int *max_pos) {
|
||
|
reg_errcode_t status = REG_OK;
|
||
|
int bottom = tre_stack_num_objects(stack);
|
||
|
int num_copied = 0;
|
||
|
int first_tag = 1;
|
||
|
tre_ast_node_t **result = copy;
|
||
|
tre_copyast_symbol_t symbol;
|
||
|
|
||
|
STACK_PUSH(stack, voidptr, ast);
|
||
|
STACK_PUSH(stack, int, COPY_RECURSE);
|
||
|
|
||
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
|
||
|
tre_ast_node_t *node;
|
||
|
if (status != REG_OK) break;
|
||
|
|
||
|
symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
|
||
|
switch (symbol) {
|
||
|
case COPY_SET_RESULT_PTR:
|
||
|
result = tre_stack_pop_voidptr(stack);
|
||
|
break;
|
||
|
case COPY_RECURSE:
|
||
|
node = tre_stack_pop_voidptr(stack);
|
||
|
switch (node->type) {
|
||
|
case LITERAL: {
|
||
|
tre_literal_t *lit = node->obj;
|
||
|
int pos = lit->position;
|
||
|
int min = lit->code_min;
|
||
|
int max = lit->code_max;
|
||
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
|
||
|
/* XXX - e.g. [ab] has only one position but two
|
||
|
nodes, so we are creating holes in the state space
|
||
|
here. Not fatal, just wastes memory. */
|
||
|
pos += *pos_add;
|
||
|
num_copied++;
|
||
|
} else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS)) {
|
||
|
/* Change this tag to empty. */
|
||
|
min = EMPTY;
|
||
|
max = pos = -1;
|
||
|
} else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) &&
|
||
|
first_tag) {
|
||
|
/* Maximize the first tag. */
|
||
|
tag_directions[max] = TRE_TAG_MAXIMIZE;
|
||
|
first_tag = 0;
|
||
|
}
|
||
|
*result = tre_ast_new_literal(mem, min, max, pos);
|
||
|
if (*result == NULL)
|
||
|
status = REG_ESPACE;
|
||
|
else {
|
||
|
tre_literal_t *p = (*result)->obj;
|
||
|
p->class = lit->class;
|
||
|
p->neg_classes = lit->neg_classes;
|
||
|
}
|
||
|
|
||
|
if (pos > *max_pos) *max_pos = pos;
|
||
|
break;
|
||
|
}
|
||
|
case UNION: {
|
||
|
tre_union_t *uni = node->obj;
|
||
|
tre_union_t *tmp;
|
||
|
*result = tre_ast_new_union(mem, uni->left, uni->right);
|
||
|
if (*result == NULL) {
|
||
|
status = REG_ESPACE;
|
||
|
break;
|
||
|
}
|
||
|
tmp = (*result)->obj;
|
||
|
result = &tmp->left;
|
||
|
STACK_PUSHX(stack, voidptr, uni->right);
|
||
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
||
|
STACK_PUSHX(stack, voidptr, &tmp->right);
|
||
|
STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
||
|
STACK_PUSHX(stack, voidptr, uni->left);
|
||
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
||
|
break;
|
||
|
}
|
||
|
case CATENATION: {
|
||
|
tre_catenation_t *cat = node->obj;
|
||
|
tre_catenation_t *tmp;
|
||
|
*result = tre_ast_new_catenation(mem, cat->left, cat->right);
|
||
|
if (*result == NULL) {
|
||
|
status = REG_ESPACE;
|
||
|
break;
|
||
|
}
|
||
|
tmp = (*result)->obj;
|
||
|
tmp->left = NULL;
|
||
|
tmp->right = NULL;
|
||
|
result = &tmp->left;
|
||
|
|
||
|
STACK_PUSHX(stack, voidptr, cat->right);
|
||
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
||
|
STACK_PUSHX(stack, voidptr, &tmp->right);
|
||
|
STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
||
|
STACK_PUSHX(stack, voidptr, cat->left);
|
||
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
||
|
break;
|
||
|
}
|
||
|
case ITERATION: {
|
||
|
tre_iteration_t *iter = node->obj;
|
||
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
||
|
STACK_PUSHX(stack, int, COPY_RECURSE);
|
||
|
*result = tre_ast_new_iter(mem, iter->arg, iter->min, iter->max,
|
||
|
iter->minimal);
|
||
|
if (*result == NULL) {
|
||
|
status = REG_ESPACE;
|
||
|
break;
|
||
|
}
|
||
|
iter = (*result)->obj;
|
||
|
result = &iter->arg;
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
assert(0);
|
||
|
break;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
*pos_add += num_copied;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
typedef enum { EXPAND_RECURSE, EXPAND_AFTER_ITER } tre_expand_ast_symbol_t;
|
||
|
|
||
|
/* Expands each iteration node that has a finite nonzero minimum or maximum
|
||
|
iteration count to a catenated sequence of copies of the node. */
|
||
|
static reg_errcode_t tre_expand_ast(tre_mem_t mem, tre_stack_t *stack,
|
||
|
tre_ast_node_t *ast, int *position,
|
||
|
tre_tag_direction_t *tag_directions) {
|
||
|
reg_errcode_t status = REG_OK;
|
||
|
int bottom = tre_stack_num_objects(stack);
|
||
|
int pos_add = 0;
|
||
|
int pos_add_total = 0;
|
||
|
int max_pos = 0;
|
||
|
int iter_depth = 0;
|
||
|
|
||
|
STACK_PUSHR(stack, voidptr, ast);
|
||
|
STACK_PUSHR(stack, int, EXPAND_RECURSE);
|
||
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
|
||
|
tre_ast_node_t *node;
|
||
|
tre_expand_ast_symbol_t symbol;
|
||
|
|
||
|
if (status != REG_OK) break;
|
||
|
|
||
|
symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
|
||
|
node = tre_stack_pop_voidptr(stack);
|
||
|
switch (symbol) {
|
||
|
case EXPAND_RECURSE:
|
||
|
switch (node->type) {
|
||
|
case LITERAL: {
|
||
|
tre_literal_t *lit = node->obj;
|
||
|
if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
|
||
|
lit->position += pos_add;
|
||
|
if (lit->position > max_pos) max_pos = lit->position;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case UNION: {
|
||
|
tre_union_t *uni = node->obj;
|
||
|
STACK_PUSHX(stack, voidptr, uni->right);
|
||
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
||
|
STACK_PUSHX(stack, voidptr, uni->left);
|
||
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
||
|
break;
|
||
|
}
|
||
|
case CATENATION: {
|
||
|
tre_catenation_t *cat = node->obj;
|
||
|
STACK_PUSHX(stack, voidptr, cat->right);
|
||
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
||
|
STACK_PUSHX(stack, voidptr, cat->left);
|
||
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
||
|
break;
|
||
|
}
|
||
|
case ITERATION: {
|
||
|
tre_iteration_t *iter = node->obj;
|
||
|
STACK_PUSHX(stack, int, pos_add);
|
||
|
STACK_PUSHX(stack, voidptr, node);
|
||
|
STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
|
||
|
STACK_PUSHX(stack, voidptr, iter->arg);
|
||
|
STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
||
|
/* If we are going to expand this node at EXPAND_AFTER_ITER
|
||
|
then don't increase the `pos' fields of the nodes now, it
|
||
|
will get done when expanding. */
|
||
|
if (iter->min > 1 || iter->max > 1) pos_add = 0;
|
||
|
iter_depth++;
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
assert(0);
|
||
|
break;
|
||
|
}
|
||
|
break;
|
||
|
case EXPAND_AFTER_ITER: {
|
||
|
tre_iteration_t *iter = node->obj;
|
||
|
int pos_add_last;
|
||
|
pos_add = tre_stack_pop_int(stack);
|
||
|
pos_add_last = pos_add;
|
||
|
if (iter->min > 1 || iter->max > 1) {
|
||
|
tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
|
||
|
int j;
|
||
|
int pos_add_save = pos_add;
|
||
|
|
||
|
/* Create a catenated sequence of copies of the node. */
|
||
|
for (j = 0; j < iter->min; j++) {
|
||
|
tre_ast_node_t *copy;
|
||
|
/* Remove tags from all but the last copy. */
|
||
|
int flags = ((j + 1 < iter->min) ? COPY_REMOVE_TAGS
|
||
|
: COPY_MAXIMIZE_FIRST_TAG);
|
||
|
pos_add_save = pos_add;
|
||
|
status = tre_copy_ast(mem, stack, iter->arg, flags, &pos_add,
|
||
|
tag_directions, ©, &max_pos);
|
||
|
if (status != REG_OK) return status;
|
||
|
if (seq1 != NULL)
|
||
|
seq1 = tre_ast_new_catenation(mem, seq1, copy);
|
||
|
else
|
||
|
seq1 = copy;
|
||
|
if (seq1 == NULL) return REG_ESPACE;
|
||
|
}
|
||
|
|
||
|
if (iter->max == -1) {
|
||
|
/* No upper limit. */
|
||
|
pos_add_save = pos_add;
|
||
|
status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL,
|
||
|
&seq2, &max_pos);
|
||
|
if (status != REG_OK) return status;
|
||
|
seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
|
||
|
if (seq2 == NULL) return REG_ESPACE;
|
||
|
} else {
|
||
|
for (j = iter->min; j < iter->max; j++) {
|
||
|
tre_ast_node_t *tmp, *copy;
|
||
|
pos_add_save = pos_add;
|
||
|
status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL,
|
||
|
©, &max_pos);
|
||
|
if (status != REG_OK) return status;
|
||
|
if (seq2 != NULL)
|
||
|
seq2 = tre_ast_new_catenation(mem, copy, seq2);
|
||
|
else
|
||
|
seq2 = copy;
|
||
|
if (seq2 == NULL) return REG_ESPACE;
|
||
|
tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
|
||
|
if (tmp == NULL) return REG_ESPACE;
|
||
|
seq2 = tre_ast_new_union(mem, tmp, seq2);
|
||
|
if (seq2 == NULL) return REG_ESPACE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pos_add = pos_add_save;
|
||
|
if (seq1 == NULL)
|
||
|
seq1 = seq2;
|
||
|
else if (seq2 != NULL)
|
||
|
seq1 = tre_ast_new_catenation(mem, seq1, seq2);
|
||
|
if (seq1 == NULL) return REG_ESPACE;
|
||
|
node->obj = seq1->obj;
|
||
|
node->type = seq1->type;
|
||
|
}
|
||
|
|
||
|
iter_depth--;
|
||
|
pos_add_total += pos_add - pos_add_last;
|
||
|
if (iter_depth == 0) pos_add = pos_add_total;
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
assert(0);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*position += pos_add_total;
|
||
|
|
||
|
/* `max_pos' should never be larger than `*position' if the above
|
||
|
code works, but just an extra safeguard let's make sure
|
||
|
`*position' is set large enough so enough memory will be
|
||
|
allocated for the transition table. */
|
||
|
if (max_pos > *position) *position = max_pos;
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static tre_pos_and_tags_t *tre_set_empty(tre_mem_t mem) {
|
||
|
tre_pos_and_tags_t *new_set;
|
||
|
|
||
|
new_set = tre_mem_calloc(mem, sizeof(*new_set));
|
||
|
if (new_set == NULL) return NULL;
|
||
|
|
||
|
new_set[0].position = -1;
|
||
|
new_set[0].code_min = -1;
|
||
|
new_set[0].code_max = -1;
|
||
|
|
||
|
return new_set;
|
||
|
}
|
||
|
|
||
|
static tre_pos_and_tags_t *tre_set_one(tre_mem_t mem, int position,
|
||
|
int code_min, int code_max,
|
||
|
tre_ctype_t class,
|
||
|
tre_ctype_t *neg_classes, int backref) {
|
||
|
tre_pos_and_tags_t *new_set;
|
||
|
|
||
|
new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2);
|
||
|
if (new_set == NULL) return NULL;
|
||
|
|
||
|
new_set[0].position = position;
|
||
|
new_set[0].code_min = code_min;
|
||
|
new_set[0].code_max = code_max;
|
||
|
new_set[0].class = class;
|
||
|
new_set[0].neg_classes = neg_classes;
|
||
|
new_set[0].backref = backref;
|
||
|
new_set[1].position = -1;
|
||
|
new_set[1].code_min = -1;
|
||
|
new_set[1].code_max = -1;
|
||
|
|
||
|
return new_set;
|
||
|
}
|
||
|
|
||
|
static tre_pos_and_tags_t *tre_set_union(tre_mem_t mem,
|
||
|
tre_pos_and_tags_t *set1,
|
||
|
tre_pos_and_tags_t *set2, int *tags,
|
||
|
int assertions) {
|
||
|
int s1, s2, i, j;
|
||
|
tre_pos_and_tags_t *new_set;
|
||
|
int *new_tags;
|
||
|
int num_tags;
|
||
|
|
||
|
for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++)
|
||
|
;
|
||
|
for (s1 = 0; set1[s1].position >= 0; s1++)
|
||
|
;
|
||
|
for (s2 = 0; set2[s2].position >= 0; s2++)
|
||
|
;
|
||
|
new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1));
|
||
|
if (!new_set) return NULL;
|
||
|
|
||
|
for (s1 = 0; set1[s1].position >= 0; s1++) {
|
||
|
new_set[s1].position = set1[s1].position;
|
||
|
new_set[s1].code_min = set1[s1].code_min;
|
||
|
new_set[s1].code_max = set1[s1].code_max;
|
||
|
new_set[s1].assertions = set1[s1].assertions | assertions;
|
||
|
new_set[s1].class = set1[s1].class;
|
||
|
new_set[s1].neg_classes = set1[s1].neg_classes;
|
||
|
new_set[s1].backref = set1[s1].backref;
|
||
|
if (set1[s1].tags == NULL && tags == NULL)
|
||
|
new_set[s1].tags = NULL;
|
||
|
else {
|
||
|
for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++)
|
||
|
;
|
||
|
new_tags = tre_mem_alloc(mem, (sizeof(*new_tags) * (i + num_tags + 1)));
|
||
|
if (new_tags == NULL) return NULL;
|
||
|
for (j = 0; j < i; j++) new_tags[j] = set1[s1].tags[j];
|
||
|
for (i = 0; i < num_tags; i++) new_tags[j + i] = tags[i];
|
||
|
new_tags[j + i] = -1;
|
||
|
new_set[s1].tags = new_tags;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (s2 = 0; set2[s2].position >= 0; s2++) {
|
||
|
new_set[s1 + s2].position = set2[s2].position;
|
||
|
new_set[s1 + s2].code_min = set2[s2].code_min;
|
||
|
new_set[s1 + s2].code_max = set2[s2].code_max;
|
||
|
/* XXX - why not | assertions here as well? */
|
||
|
new_set[s1 + s2].assertions = set2[s2].assertions;
|
||
|
new_set[s1 + s2].class = set2[s2].class;
|
||
|
new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
|
||
|
new_set[s1 + s2].backref = set2[s2].backref;
|
||
|
if (set2[s2].tags == NULL)
|
||
|
new_set[s1 + s2].tags = NULL;
|
||
|
else {
|
||
|
for (i = 0; set2[s2].tags[i] >= 0; i++)
|
||
|
;
|
||
|
new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
|
||
|
if (new_tags == NULL) return NULL;
|
||
|
for (j = 0; j < i; j++) new_tags[j] = set2[s2].tags[j];
|
||
|
new_tags[j] = -1;
|
||
|
new_set[s1 + s2].tags = new_tags;
|
||
|
}
|
||
|
}
|
||
|
new_set[s1 + s2].position = -1;
|
||
|
return new_set;
|
||
|
}
|
||
|
|
||
|
/* Finds the empty path through `node' which is the one that should be
|
||
|
taken according to POSIX.2 rules, and adds the tags on that path to
|
||
|
`tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is
|
||
|
set to the number of tags seen on the path. */
|
||
|
static reg_errcode_t tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node,
|
||
|
int *tags, int *assertions,
|
||
|
int *num_tags_seen) {
|
||
|
tre_literal_t *lit;
|
||
|
tre_union_t *uni;
|
||
|
tre_catenation_t *cat;
|
||
|
tre_iteration_t *iter;
|
||
|
int i;
|
||
|
int bottom = tre_stack_num_objects(stack);
|
||
|
reg_errcode_t status = REG_OK;
|
||
|
if (num_tags_seen) *num_tags_seen = 0;
|
||
|
|
||
|
status = tre_stack_push_voidptr(stack, node);
|
||
|
|
||
|
/* Walk through the tree recursively. */
|
||
|
while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
|
||
|
node = tre_stack_pop_voidptr(stack);
|
||
|
|
||
|
switch (node->type) {
|
||
|
case LITERAL:
|
||
|
lit = (tre_literal_t *)node->obj;
|
||
|
switch (lit->code_min) {
|
||
|
case TAG:
|
||
|
if (lit->code_max >= 0) {
|
||
|
if (tags != NULL) {
|
||
|
/* Add the tag to `tags'. */
|
||
|
for (i = 0; tags[i] >= 0; i++)
|
||
|
if (tags[i] == lit->code_max) break;
|
||
|
if (tags[i] < 0) {
|
||
|
tags[i] = lit->code_max;
|
||
|
tags[i + 1] = -1;
|
||
|
}
|
||
|
}
|
||
|
if (num_tags_seen) (*num_tags_seen)++;
|
||
|
}
|
||
|
break;
|
||
|
case ASSERTION:
|
||
|
assert(lit->code_max >= 1 || lit->code_max <= ASSERT_LAST);
|
||
|
if (assertions != NULL) *assertions |= lit->code_max;
|
||
|
break;
|
||
|
case EMPTY:
|
||
|
break;
|
||
|
default:
|
||
|
assert(0);
|
||
|
break;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case UNION:
|
||
|
/* Subexpressions starting earlier take priority over ones
|
||
|
starting later, so we prefer the left subexpression over the
|
||
|
right subexpression. */
|
||
|
uni = (tre_union_t *)node->obj;
|
||
|
if (uni->left->nullable)
|
||
|
STACK_PUSHX(stack, voidptr, uni->left)
|
||
|
else if (uni->right->nullable)
|
||
|
STACK_PUSHX(stack, voidptr, uni->right)
|
||
|
else
|
||
|
assert(0);
|
||
|
break;
|
||
|
|
||
|
case CATENATION:
|
||
|
/* The path must go through both children. */
|
||
|
cat = (tre_catenation_t *)node->obj;
|
||
|
assert(cat->left->nullable);
|
||
|
assert(cat->right->nullable);
|
||
|
STACK_PUSHX(stack, voidptr, cat->left);
|
||
|
STACK_PUSHX(stack, voidptr, cat->right);
|
||
|
break;
|
||
|
|
||
|
case ITERATION:
|
||
|
/* A match with an empty string is preferred over no match at
|
||
|
all, so we go through the argument if possible. */
|
||
|
iter = (tre_iteration_t *)node->obj;
|
||
|
if (iter->arg->nullable) STACK_PUSHX(stack, voidptr, iter->arg);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
assert(0);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
typedef enum {
|
||
|
NFL_RECURSE,
|
||
|
NFL_POST_UNION,
|
||
|
NFL_POST_CATENATION,
|
||
|
NFL_POST_ITERATION
|
||
|
} tre_nfl_stack_symbol_t;
|
||
|
|
||
|
/* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for
|
||
|
the nodes of the AST `tree'. */
|
||
|
static reg_errcode_t tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack,
|
||
|
tre_ast_node_t *tree) {
|
||
|
int bottom = tre_stack_num_objects(stack);
|
||
|
|
||
|
STACK_PUSHR(stack, voidptr, tree);
|
||
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
||
|
|
||
|
while (tre_stack_num_objects(stack) > bottom) {
|
||
|
tre_nfl_stack_symbol_t symbol;
|
||
|
tre_ast_node_t *node;
|
||
|
|
||
|
symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
|
||
|
node = tre_stack_pop_voidptr(stack);
|
||
|
switch (symbol) {
|
||
|
case NFL_RECURSE:
|
||
|
switch (node->type) {
|
||
|
case LITERAL: {
|
||
|
tre_literal_t *lit = (tre_literal_t *)node->obj;
|
||
|
if (IS_BACKREF(lit)) {
|
||
|
/* Back references: nullable = false, firstpos = {i},
|
||
|
lastpos = {i}. */
|
||
|
node->nullable = 0;
|
||
|
node->firstpos =
|
||
|
tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, -1);
|
||
|
if (!node->firstpos) return REG_ESPACE;
|
||
|
node->lastpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX,
|
||
|
0, NULL, (int)lit->code_max);
|
||
|
if (!node->lastpos) return REG_ESPACE;
|
||
|
} else if (lit->code_min < 0) {
|
||
|
/* Tags, empty strings, params, and zero width assertions:
|
||
|
nullable = true, firstpos = {}, and lastpos = {}. */
|
||
|
node->nullable = 1;
|
||
|
node->firstpos = tre_set_empty(mem);
|
||
|
if (!node->firstpos) return REG_ESPACE;
|
||
|
node->lastpos = tre_set_empty(mem);
|
||
|
if (!node->lastpos) return REG_ESPACE;
|
||
|
} else {
|
||
|
/* Literal at position i: nullable = false, firstpos = {i},
|
||
|
lastpos = {i}. */
|
||
|
node->nullable = 0;
|
||
|
node->firstpos =
|
||
|
tre_set_one(mem, lit->position, (int)lit->code_min,
|
||
|
(int)lit->code_max, 0, NULL, -1);
|
||
|
if (!node->firstpos) return REG_ESPACE;
|
||
|
node->lastpos = tre_set_one(
|
||
|
mem, lit->position, (int)lit->code_min, (int)lit->code_max,
|
||
|
lit->class, lit->neg_classes, -1);
|
||
|
if (!node->lastpos) return REG_ESPACE;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case UNION:
|
||
|
/* Compute the attributes for the two subtrees, and after that
|
||
|
for this node. */
|
||
|
STACK_PUSHR(stack, voidptr, node);
|
||
|
STACK_PUSHR(stack, int, NFL_POST_UNION);
|
||
|
STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right);
|
||
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
||
|
STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left);
|
||
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
||
|
break;
|
||
|
|
||
|
case CATENATION:
|
||
|
/* Compute the attributes for the two subtrees, and after that
|
||
|
for this node. */
|
||
|
STACK_PUSHR(stack, voidptr, node);
|
||
|
STACK_PUSHR(stack, int, NFL_POST_CATENATION);
|
||
|
STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right);
|
||
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
||
|
STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left);
|
||
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
||
|
break;
|
||
|
|
||
|
case ITERATION:
|
||
|
/* Compute the attributes for the subtree, and after that for
|
||
|
this node. */
|
||
|
STACK_PUSHR(stack, voidptr, node);
|
||
|
STACK_PUSHR(stack, int, NFL_POST_ITERATION);
|
||
|
STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg);
|
||
|
STACK_PUSHR(stack, int, NFL_RECURSE);
|
||
|
break;
|
||
|
}
|
||
|
break; /* end case: NFL_RECURSE */
|
||
|
|
||
|
case NFL_POST_UNION: {
|
||
|
tre_union_t *uni = (tre_union_t *)node->obj;
|
||
|
node->nullable = uni->left->nullable || uni->right->nullable;
|
||
|
node->firstpos = tre_set_union(mem, uni->left->firstpos,
|
||
|
uni->right->firstpos, NULL, 0);
|
||
|
if (!node->firstpos) return REG_ESPACE;
|
||
|
node->lastpos = tre_set_union(mem, uni->left->lastpos,
|
||
|
uni->right->lastpos, NULL, 0);
|
||
|
if (!node->lastpos) return REG_ESPACE;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case NFL_POST_ITERATION: {
|
||
|
tre_iteration_t *iter = (tre_iteration_t *)node->obj;
|
||
|
|
||
|
if (iter->min == 0 || iter->arg->nullable)
|
||
|
node->nullable = 1;
|
||
|
else
|
||
|
node->nullable = 0;
|
||
|
node->firstpos = iter->arg->firstpos;
|
||
|
node->lastpos = iter->arg->lastpos;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case NFL_POST_CATENATION: {
|
||
|
int num_tags, *tags, assertions;
|
||
|
reg_errcode_t status;
|
||
|
tre_catenation_t *cat = node->obj;
|
||
|
node->nullable = cat->left->nullable && cat->right->nullable;
|
||
|
|
||
|
/* Compute firstpos. */
|
||
|
if (cat->left->nullable) {
|
||
|
/* The left side matches the empty string. Make a first pass
|
||
|
with tre_match_empty() to get the number of tags and
|
||
|
parameters. */
|
||
|
status = tre_match_empty(stack, cat->left, NULL, NULL, &num_tags);
|
||
|
if (status != REG_OK) return status;
|
||
|
/* Allocate arrays for the tags and parameters. */
|
||
|
tags = malloc(sizeof(*tags) * (num_tags + 1));
|
||
|
if (!tags) return REG_ESPACE;
|
||
|
tags[0] = -1;
|
||
|
assertions = 0;
|
||
|
/* Second pass with tre_mach_empty() to get the list of
|
||
|
tags and parameters. */
|
||
|
status = tre_match_empty(stack, cat->left, tags, &assertions, NULL);
|
||
|
if (status != REG_OK) {
|
||
|
free(tags), tags = NULL;
|
||
|
return status;
|
||
|
}
|
||
|
node->firstpos = tre_set_union(mem, cat->right->firstpos,
|
||
|
cat->left->firstpos, tags, assertions);
|
||
|
free(tags), tags = NULL;
|
||
|
if (!node->firstpos) return REG_ESPACE;
|
||
|
} else {
|
||
|
node->firstpos = cat->left->firstpos;
|
||
|
}
|
||
|
|
||
|
/* Compute lastpos. */
|
||
|
if (cat->right->nullable) {
|
||
|
/* The right side matches the empty string. Make a first pass
|
||
|
with tre_match_empty() to get the number of tags and
|
||
|
parameters. */
|
||
|
status = tre_match_empty(stack, cat->right, NULL, NULL, &num_tags);
|
||
|
if (status != REG_OK) return status;
|
||
|
/* Allocate arrays for the tags and parameters. */
|
||
|
tags = malloc(sizeof(int) * (num_tags + 1));
|
||
|
if (!tags) return REG_ESPACE;
|
||
|
tags[0] = -1;
|
||
|
assertions = 0;
|
||
|
/* Second pass with tre_mach_empty() to get the list of
|
||
|
tags and parameters. */
|
||
|
status = tre_match_empty(stack, cat->right, tags, &assertions, NULL);
|
||
|
if (status != REG_OK) {
|
||
|
free(tags), tags = NULL;
|
||
|
return status;
|
||
|
}
|
||
|
node->lastpos = tre_set_union(mem, cat->left->lastpos,
|
||
|
cat->right->lastpos, tags, assertions);
|
||
|
free(tags), tags = NULL;
|
||
|
if (!node->lastpos) return REG_ESPACE;
|
||
|
} else {
|
||
|
node->lastpos = cat->right->lastpos;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
assert(0);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return REG_OK;
|
||
|
}
|
||
|
|
||
|
/* Adds a transition from each position in `p1' to each position in `p2'. */
|
||
|
static reg_errcode_t tre_make_trans(tre_pos_and_tags_t *p1,
|
||
|
tre_pos_and_tags_t *p2,
|
||
|
tre_tnfa_transition_t *transitions,
|
||
|
int *counts, int *offs) {
|
||
|
tre_pos_and_tags_t *orig_p2 = p2;
|
||
|
tre_tnfa_transition_t *trans;
|
||
|
int i, j, k, l, dup, prev_p2_pos;
|
||
|
|
||
|
if (transitions != NULL)
|
||
|
while (p1->position >= 0) {
|
||
|
p2 = orig_p2;
|
||
|
prev_p2_pos = -1;
|
||
|
while (p2->position >= 0) {
|
||
|
/* Optimization: if this position was already handled, skip it. */
|
||
|
if (p2->position == prev_p2_pos) {
|
||
|
p2++;
|
||
|
continue;
|
||
|
}
|
||
|
prev_p2_pos = p2->position;
|
||
|
/* Set `trans' to point to the next unused transition from
|
||
|
position `p1->position'. */
|
||
|
trans = transitions + offs[p1->position];
|
||
|
while (trans->state != NULL) {
|
||
|
#if 0
|
||
|
/* If we find a previous transition from `p1->position' to
|
||
|
`p2->position', it is overwritten. This can happen only
|
||
|
if there are nested loops in the regexp, like in "((a)*)*".
|
||
|
In POSIX.2 repetition using the outer loop is always
|
||
|
preferred over using the inner loop. Therefore the
|
||
|
transition for the inner loop is useless and can be thrown
|
||
|
away. */
|
||
|
/* XXX - The same position is used for all nodes in a bracket
|
||
|
expression, so this optimization cannot be used (it will
|
||
|
break bracket expressions) unless I figure out a way to
|
||
|
detect it here. */
|
||
|
if (trans->state_id == p2->position)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
trans++;
|
||
|
}
|
||
|
|
||
|
if (trans->state == NULL) (trans + 1)->state = NULL;
|
||
|
/* Use the character ranges, assertions, etc. from `p1' for
|
||
|
the transition from `p1' to `p2'. */
|
||
|
trans->code_min = p1->code_min;
|
||
|
trans->code_max = p1->code_max;
|
||
|
trans->state = transitions + offs[p2->position];
|
||
|
trans->state_id = p2->position;
|
||
|
trans->assertions =
|
||
|
p1->assertions | p2->assertions |
|
||
|
(p1->class ? ASSERT_CHAR_CLASS : 0) |
|
||
|
(p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0);
|
||
|
if (p1->backref >= 0) {
|
||
|
assert((trans->assertions & ASSERT_CHAR_CLASS) == 0);
|
||
|
assert(p2->backref < 0);
|
||
|
trans->u.backref = p1->backref;
|
||
|
trans->assertions |= ASSERT_BACKREF;
|
||
|
} else
|
||
|
trans->u.class = p1->class;
|
||
|
if (p1->neg_classes != NULL) {
|
||
|
for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
||
|
;
|
||
|
trans->neg_classes = malloc(sizeof(*trans->neg_classes) * (i + 1));
|
||
|
if (trans->neg_classes == NULL) return REG_ESPACE;
|
||
|
for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
||
|
trans->neg_classes[i] = p1->neg_classes[i];
|
||
|
trans->neg_classes[i] = (tre_ctype_t)0;
|
||
|
} else
|
||
|
trans->neg_classes = NULL;
|
||
|
|
||
|
/* Find out how many tags this transition has. */
|
||
|
i = 0;
|
||
|
if (p1->tags != NULL)
|
||
|
while (p1->tags[i] >= 0) i++;
|
||
|
j = 0;
|
||
|
if (p2->tags != NULL)
|
||
|
while (p2->tags[j] >= 0) j++;
|
||
|
|
||
|
/* If we are overwriting a transition, free the old tag array. */
|
||
|
if (trans->tags != NULL) free(trans->tags), trans->tags = NULL;
|
||
|
trans->tags = NULL;
|
||
|
|
||
|
/* If there were any tags, allocate an array and fill it. */
|
||
|
if (i + j > 0) {
|
||
|
trans->tags = malloc(sizeof(*trans->tags) * (i + j + 1));
|
||
|
if (!trans->tags) return REG_ESPACE;
|
||
|
i = 0;
|
||
|
if (p1->tags != NULL)
|
||
|
while (p1->tags[i] >= 0) {
|
||
|
trans->tags[i] = p1->tags[i];
|
||
|
i++;
|
||
|
}
|
||
|
l = i;
|
||
|
j = 0;
|
||
|
if (p2->tags != NULL)
|
||
|
while (p2->tags[j] >= 0) {
|
||
|
/* Don't add duplicates. */
|
||
|
dup = 0;
|
||
|
for (k = 0; k < i; k++)
|
||
|
if (trans->tags[k] == p2->tags[j]) {
|
||
|
dup = 1;
|
||
|
break;
|
||
|
}
|
||
|
if (!dup) trans->tags[l++] = p2->tags[j];
|
||
|
j++;
|
||
|
}
|
||
|
trans->tags[l] = -1;
|
||
|
}
|
||
|
|
||
|
p2++;
|
||
|
}
|
||
|
p1++;
|
||
|
}
|
||
|
else
|
||
|
/* Compute a maximum limit for the number of transitions leaving
|
||
|
from each state. */
|
||
|
while (p1->position >= 0) {
|
||
|
p2 = orig_p2;
|
||
|
while (p2->position >= 0) {
|
||
|
counts[p1->position]++;
|
||
|
p2++;
|
||
|
}
|
||
|
p1++;
|
||
|
}
|
||
|
return REG_OK;
|
||
|
}
|
||
|
|
||
|
/* Converts the syntax tree to a TNFA. All the transitions in the TNFA are
|
||
|
labelled with one character range (there are no transitions on empty
|
||
|
strings). The TNFA takes O(n^2) space in the worst case, `n' is size of
|
||
|
the regexp. */
|
||
|
static reg_errcode_t tre_ast_to_tnfa(tre_ast_node_t *node,
|
||
|
tre_tnfa_transition_t *transitions,
|
||
|
int *counts, int *offs) {
|
||
|
tre_union_t *uni;
|
||
|
tre_catenation_t *cat;
|
||
|
tre_iteration_t *iter;
|
||
|
reg_errcode_t errcode = REG_OK;
|
||
|
|
||
|
/* XXX - recurse using a stack!. */
|
||
|
switch (node->type) {
|
||
|
case LITERAL:
|
||
|
break;
|
||
|
case UNION:
|
||
|
uni = (tre_union_t *)node->obj;
|
||
|
errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs);
|
||
|
if (errcode != REG_OK) return errcode;
|
||
|
errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs);
|
||
|
break;
|
||
|
|
||
|
case CATENATION:
|
||
|
cat = (tre_catenation_t *)node->obj;
|
||
|
/* Add a transition from each position in cat->left->lastpos
|
||
|
to each position in cat->right->firstpos. */
|
||
|
errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos,
|
||
|
transitions, counts, offs);
|
||
|
if (errcode != REG_OK) return errcode;
|
||
|
errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs);
|
||
|
if (errcode != REG_OK) return errcode;
|
||
|
errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs);
|
||
|
break;
|
||
|
|
||
|
case ITERATION:
|
||
|
iter = (tre_iteration_t *)node->obj;
|
||
|
assert(iter->max == -1 || iter->max == 1);
|
||
|
|
||
|
if (iter->max == -1) {
|
||
|
assert(iter->min == 0 || iter->min == 1);
|
||
|
/* Add a transition from each last position in the iterated
|
||
|
expression to each first position. */
|
||
|
errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos,
|
||
|
transitions, counts, offs);
|
||
|
if (errcode != REG_OK) return errcode;
|
||
|
}
|
||
|
errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs);
|
||
|
break;
|
||
|
}
|
||
|
return errcode;
|
||
|
}
|
||
|
|
||
|
#define ERROR_EXIT(err) \
|
||
|
do { \
|
||
|
errcode = err; \
|
||
|
if (/*CONSTCOND*/ 1) goto error_exit; \
|
||
|
} while (/*CONSTCOND*/ 0)
|
||
|
|
||
|
int regcomp(regex_t *restrict preg, const char *restrict regex, int cflags) {
|
||
|
tre_stack_t *stack;
|
||
|
tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r;
|
||
|
tre_pos_and_tags_t *p;
|
||
|
int *counts = NULL, *offs = NULL;
|
||
|
int i, add = 0;
|
||
|
tre_tnfa_transition_t *transitions, *initial;
|
||
|
tre_tnfa_t *tnfa = NULL;
|
||
|
tre_submatch_data_t *submatch_data;
|
||
|
tre_tag_direction_t *tag_directions = NULL;
|
||
|
reg_errcode_t errcode;
|
||
|
tre_mem_t mem;
|
||
|
|
||
|
/* Parse context. */
|
||
|
tre_parse_ctx_t parse_ctx;
|
||
|
|
||
|
/* Allocate a stack used throughout the compilation process for various
|
||
|
purposes. */
|
||
|
stack = tre_stack_new(512, 1024000, 128);
|
||
|
if (!stack) return REG_ESPACE;
|
||
|
/* Allocate a fast memory allocator. */
|
||
|
mem = tre_mem_new();
|
||
|
if (!mem) {
|
||
|
tre_stack_destroy(stack);
|
||
|
return REG_ESPACE;
|
||
|
}
|
||
|
|
||
|
/* Parse the regexp. */
|
||
|
memset(&parse_ctx, 0, sizeof(parse_ctx));
|
||
|
parse_ctx.mem = mem;
|
||
|
parse_ctx.stack = stack;
|
||
|
parse_ctx.start = regex;
|
||
|
parse_ctx.cflags = cflags;
|
||
|
parse_ctx.max_backref = -1;
|
||
|
errcode = tre_parse(&parse_ctx);
|
||
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
||
|
preg->re_nsub = parse_ctx.submatch_id - 1;
|
||
|
tree = parse_ctx.n;
|
||
|
|
||
|
#ifdef TRE_DEBUG
|
||
|
tre_ast_print(tree);
|
||
|
#endif /* TRE_DEBUG */
|
||
|
|
||
|
/* Referring to nonexistent subexpressions is illegal. */
|
||
|
if (parse_ctx.max_backref > (int)preg->re_nsub) ERROR_EXIT(REG_ESUBREG);
|
||
|
|
||
|
/* Allocate the TNFA struct. */
|
||
|
tnfa = calloc(1, sizeof(tre_tnfa_t));
|
||
|
if (tnfa == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
tnfa->have_backrefs = parse_ctx.max_backref >= 0;
|
||
|
tnfa->have_approx = 0;
|
||
|
tnfa->num_submatches = parse_ctx.submatch_id;
|
||
|
|
||
|
/* Set up tags for submatch addressing. If REG_NOSUB is set and the
|
||
|
regexp does not have back references, this can be skipped. */
|
||
|
if (tnfa->have_backrefs || !(cflags & REG_NOSUB)) {
|
||
|
/* Figure out how many tags we will need. */
|
||
|
errcode = tre_add_tags(NULL, stack, tree, tnfa);
|
||
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
||
|
|
||
|
if (tnfa->num_tags > 0) {
|
||
|
tag_directions = malloc(sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
||
|
if (tag_directions == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
tnfa->tag_directions = tag_directions;
|
||
|
memset(tag_directions, -1,
|
||
|
sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
||
|
}
|
||
|
tnfa->minimal_tags =
|
||
|
calloc((unsigned)tnfa->num_tags * 2 + 1, sizeof(*tnfa->minimal_tags));
|
||
|
if (tnfa->minimal_tags == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
|
||
|
submatch_data =
|
||
|
calloc((unsigned)parse_ctx.submatch_id, sizeof(*submatch_data));
|
||
|
if (submatch_data == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
tnfa->submatch_data = submatch_data;
|
||
|
|
||
|
errcode = tre_add_tags(mem, stack, tree, tnfa);
|
||
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
||
|
}
|
||
|
|
||
|
/* Expand iteration nodes. */
|
||
|
errcode =
|
||
|
tre_expand_ast(mem, stack, tree, &parse_ctx.position, tag_directions);
|
||
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
||
|
|
||
|
/* Add a dummy node for the final state.
|
||
|
XXX - For certain patterns this dummy node can be optimized away,
|
||
|
for example "a*" or "ab*". Figure out a simple way to detect
|
||
|
this possibility. */
|
||
|
tmp_ast_l = tree;
|
||
|
tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++);
|
||
|
if (tmp_ast_r == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
|
||
|
tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r);
|
||
|
if (tree == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
|
||
|
errcode = tre_compute_nfl(mem, stack, tree);
|
||
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
||
|
|
||
|
counts = malloc(sizeof(int) * parse_ctx.position);
|
||
|
if (counts == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
|
||
|
offs = malloc(sizeof(int) * parse_ctx.position);
|
||
|
if (offs == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
|
||
|
for (i = 0; i < parse_ctx.position; i++) counts[i] = 0;
|
||
|
tre_ast_to_tnfa(tree, NULL, counts, NULL);
|
||
|
|
||
|
add = 0;
|
||
|
for (i = 0; i < parse_ctx.position; i++) {
|
||
|
offs[i] = add;
|
||
|
add += counts[i] + 1;
|
||
|
counts[i] = 0;
|
||
|
}
|
||
|
transitions = calloc((unsigned)add + 1, sizeof(*transitions));
|
||
|
if (transitions == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
tnfa->transitions = transitions;
|
||
|
tnfa->num_transitions = add;
|
||
|
|
||
|
errcode = tre_ast_to_tnfa(tree, transitions, counts, offs);
|
||
|
if (errcode != REG_OK) ERROR_EXIT(errcode);
|
||
|
|
||
|
tnfa->firstpos_chars = NULL;
|
||
|
|
||
|
p = tree->firstpos;
|
||
|
i = 0;
|
||
|
while (p->position >= 0) {
|
||
|
i++;
|
||
|
p++;
|
||
|
}
|
||
|
|
||
|
initial = calloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t));
|
||
|
if (initial == NULL) ERROR_EXIT(REG_ESPACE);
|
||
|
tnfa->initial = initial;
|
||
|
|
||
|
i = 0;
|
||
|
for (p = tree->firstpos; p->position >= 0; p++) {
|
||
|
initial[i].state = transitions + offs[p->position];
|
||
|
initial[i].state_id = p->position;
|
||
|
initial[i].tags = NULL;
|
||
|
/* Copy the arrays p->tags, and p->params, they are allocated
|
||
|
from a tre_mem object. */
|
||
|
if (p->tags) {
|
||
|
int j;
|
||
|
for (j = 0; p->tags[j] >= 0; j++)
|
||
|
;
|
||
|
initial[i].tags = malloc(sizeof(*p->tags) * (j + 1));
|
||
|
if (!initial[i].tags) ERROR_EXIT(REG_ESPACE);
|
||
|
memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
|
||
|
}
|
||
|
initial[i].assertions = p->assertions;
|
||
|
i++;
|
||
|
}
|
||
|
initial[i].state = NULL;
|
||
|
|
||
|
tnfa->num_transitions = add;
|
||
|
tnfa->final = transitions + offs[tree->lastpos[0].position];
|
||
|
tnfa->num_states = parse_ctx.position;
|
||
|
tnfa->cflags = cflags;
|
||
|
|
||
|
tre_mem_destroy(mem);
|
||
|
tre_stack_destroy(stack);
|
||
|
free(counts), counts = NULL;
|
||
|
free(offs), offs = NULL;
|
||
|
|
||
|
preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
||
|
return REG_OK;
|
||
|
|
||
|
error_exit:
|
||
|
/* Free everything that was allocated and return the error code. */
|
||
|
tre_mem_destroy(mem);
|
||
|
if (stack != NULL) tre_stack_destroy(stack);
|
||
|
if (counts != NULL) free(counts), counts = NULL;
|
||
|
if (offs != NULL) free(offs), offs = NULL;
|
||
|
preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
||
|
regfree(preg);
|
||
|
return errcode;
|
||
|
}
|
||
|
|
||
|
void regfree(regex_t *preg) {
|
||
|
tre_tnfa_t *tnfa;
|
||
|
unsigned int i;
|
||
|
tre_tnfa_transition_t *trans;
|
||
|
|
||
|
tnfa = (void *)preg->TRE_REGEX_T_FIELD;
|
||
|
if (!tnfa) return;
|
||
|
|
||
|
for (i = 0; i < tnfa->num_transitions; i++)
|
||
|
if (tnfa->transitions[i].state) {
|
||
|
if (tnfa->transitions[i].tags)
|
||
|
free(tnfa->transitions[i].tags), tnfa->transitions[i].tags = NULL;
|
||
|
if (tnfa->transitions[i].neg_classes)
|
||
|
free(tnfa->transitions[i].neg_classes),
|
||
|
tnfa->transitions[i].neg_classes = NULL;
|
||
|
}
|
||
|
if (tnfa->transitions) free(tnfa->transitions), tnfa->transitions = NULL;
|
||
|
|
||
|
if (tnfa->initial) {
|
||
|
for (trans = tnfa->initial; trans->state; trans++) {
|
||
|
if (trans->tags) free(trans->tags), trans->tags = NULL;
|
||
|
}
|
||
|
free(tnfa->initial), tnfa->initial = NULL;
|
||
|
}
|
||
|
|
||
|
if (tnfa->submatch_data) {
|
||
|
for (i = 0; i < tnfa->num_submatches; i++)
|
||
|
if (tnfa->submatch_data[i].parents)
|
||
|
free(tnfa->submatch_data[i].parents),
|
||
|
tnfa->submatch_data[i].parents = NULL;
|
||
|
free(tnfa->submatch_data), tnfa->submatch_data = NULL;
|
||
|
}
|
||
|
|
||
|
if (tnfa->tag_directions)
|
||
|
free(tnfa->tag_directions), tnfa->tag_directions = NULL;
|
||
|
if (tnfa->firstpos_chars)
|
||
|
free(tnfa->firstpos_chars), tnfa->firstpos_chars = NULL;
|
||
|
if (tnfa->minimal_tags) free(tnfa->minimal_tags), tnfa->minimal_tags = NULL;
|
||
|
free(tnfa), tnfa = NULL;
|
||
|
}
|