cosmopolitan/libc/alg/tarjan.c

184 lines
6.6 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ This program is free software; you can redistribute it and/or modify │
│ it under the terms of the GNU General Public License as published by │
│ the Free Software Foundation; version 2 of the License. │
│ │
│ This program is distributed in the hope that it will be useful, but │
│ WITHOUT ANY WARRANTY; without even the implied warranty of │
│ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │
│ General Public License for more details. │
│ │
│ You should have received a copy of the GNU General Public License │
│ along with this program; if not, write to the Free Software │
│ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │
│ 02110-1301 USA │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/alg/alg.h"
#include "libc/assert.h"
#include "libc/limits.h"
#include "libc/macros.h"
#include "libc/mem/mem.h"
/**
* @fileoverview Tarjan's Strongly Connected Components Algorithm.
*
* “The data structures that [Tarjan] devised for this problem fit
* together in an amazingly beautiful way, so that the quantities
* you need to look at while exploring a directed graph are always
* magically at your fingertips. And his algorithm also does
* topological sorting as a byproduct.” ──D.E. Knuth
*/
struct Tarjan {
int Vn, En, Ci, Ri, *R, *C, index;
const int (*E)[2];
struct Vertex {
int Vi;
int Ei;
int index;
int lowlink;
bool onstack;
bool selfreferential;
} * V;
struct TarjanStack {
int i;
int n;
int *p;
} S;
};
static bool TarjanPush(struct Tarjan *t, int v) {
int *q;
assert(t->S.i >= 0);
assert(t->S.n >= 0);
assert(0 <= v && v < t->Vn);
if (t->S.i == t->S.n) {
if ((q = realloc(t->S.p, (t->S.n + (t->S.n >> 1) + 8) * sizeof(*t->S.p)))) {
t->S.p = q;
} else {
return false;
}
}
t->S.p[t->S.i++] = v;
return true;
}
static int TarjanPop(struct Tarjan *t) {
assert(t->S.i > 0);
return t->S.p[--t->S.i];
}
static bool TarjanConnect(struct Tarjan *t, int v) {
int fs, w, e;
assert(0 <= v && v < t->Vn);
t->V[v].index = t->index;
t->V[v].lowlink = t->index;
t->V[v].onstack = true;
t->index++;
if (!TarjanPush(t, v)) return false;
fs = t->V[v].Ei;
if (fs != -1) {
for (e = fs; e < t->En && v == t->E[e][0]; ++e) {
w = t->E[e][1];
if (!t->V[w].index) {
if (!TarjanConnect(t, t->V[w].Vi)) return false;
t->V[v].lowlink = MIN(t->V[v].lowlink, t->V[w].lowlink);
} else if (t->V[w].onstack) {
t->V[v].lowlink = MIN(t->V[v].lowlink, t->V[w].index);
}
if (w == v) {
t->V[w].selfreferential = true;
}
}
}
if (t->V[v].lowlink == t->V[v].index) {
do {
w = TarjanPop(t);
t->V[w].onstack = false;
t->R[t->Ri++] = t->V[w].Vi;
} while (w != v);
if (t->C) t->C[t->Ci++] = t->Ri;
}
return true;
}
/**
* Determines order of things in network and finds tangled clusters too.
*
* @param vertices is an array of vertex values, which isn't passed to
* this function, since the algorithm only needs to consider indices
* @param vertex_count is the number of items in the vertices array
* @param edges are grouped directed links between indices of vertices,
* which can be thought of as "edge[i][0] depends on edge[i][1]" or
* "edge[i][1] must come before edge[i][0]" in topological order
* @param edge_count is the number of items in edges, which may be 0 if
* there aren't any connections between vertices in the graph
* @param out_sorted receives indices into the vertices array in
* topologically sorted order, and must be able to store
* vertex_count items, and that's always how many are stored
* @param out_opt_components receives indices into the out_sorted array,
* indicating where each strongly-connected component ends; must be
* able to store vertex_count items; and it may be NULL
* @param out_opt_componentcount receives the number of cycle indices
* written to out_opt_components, which will be vertex_count if
* there aren't any cycles in the graph; and may be NULL if
* out_opt_components is NULL
* @return 0 on success or -1 w/ errno
* @error ENOMEM
* @note Tarjan's Algorithm is O(|V|+|E|)
*/
int tarjan(int vertex_count, const int (*edges)[2], int edge_count,
int out_sorted[], int out_opt_components[],
int *out_opt_componentcount) {
int i, rc, v, e;
struct Tarjan *t;
assert(0 <= edge_count && edge_count <= INT_MAX);
assert(0 <= vertex_count && vertex_count <= INT_MAX);
for (i = 0; i < edge_count; ++i) {
if (i) assert(edges[i - 1][0] <= edges[i][0]);
assert(edges[i][0] < vertex_count);
assert(edges[i][1] < vertex_count);
}
if (!(t = calloc(1, (sizeof(struct Tarjan) +
sizeof(struct Vertex) * vertex_count)))) {
return -1;
}
t->V = (struct Vertex *)((char *)t + sizeof(struct Tarjan));
t->Vn = vertex_count;
t->E = edges;
t->En = edge_count;
t->R = out_sorted;
t->C = out_opt_components;
t->index = 1;
for (v = 0; v < t->Vn; ++v) {
t->V[v].Vi = v;
t->V[v].Ei = -1;
}
for (e = 0, v = -1; e < t->En; ++e) {
if (t->E[e][0] == v) continue;
v = t->E[e][0];
t->V[v].Ei = e;
}
rc = 0;
for (v = 0; v < t->Vn; ++v) {
if (!t->V[v].index) {
if (!TarjanConnect(t, v)) {
free(t->S.p);
free(t);
return -1;
}
}
}
if (out_opt_components) {
*out_opt_componentcount = t->Ci;
}
assert(t->Ri == vertex_count);
free(t->S.p);
free(t);
return rc;
}