162 lines
5.4 KiB
C
162 lines
5.4 KiB
C
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│
|
|
╞══════════════════════════════════════════════════════════════════════════════╡
|
|
│ Copyright 1995-2016 Mark Adler │
|
|
│ Copyright 2017 The Chromium Authors │
|
|
│ Use of this source code is governed by the BSD-style licenses that can │
|
|
│ be found in the third_party/zlib/LICENSE file. │
|
|
╚─────────────────────────────────────────────────────────────────────────────*/
|
|
#include "libc/dce.h"
|
|
#include "libc/nexgen32e/x86feature.h"
|
|
#include "third_party/zlib/internal.h"
|
|
#include "third_party/zlib/zutil.h"
|
|
|
|
asm(".ident\t\"\\n\\n\
|
|
zlib (zlib License)\\n\
|
|
Copyright 1995-2017 Jean-loup Gailly and Mark Adler\"");
|
|
asm(".include \"libc/disclaimer.inc\"");
|
|
|
|
#define BASE 65521U /* largest prime smaller than 65536 */
|
|
#define NMAX 5552 /* largest n such that 255n(n+1)/2+(n+1)(BASE-1)<=2^32-1 */
|
|
|
|
#define DO1(buf, i) \
|
|
{ \
|
|
adler += (buf)[i]; \
|
|
sum2 += adler; \
|
|
}
|
|
#define DO2(buf, i) \
|
|
DO1(buf, i); \
|
|
DO1(buf, i + 1);
|
|
#define DO4(buf, i) \
|
|
DO2(buf, i); \
|
|
DO2(buf, i + 2);
|
|
#define DO8(buf, i) \
|
|
DO4(buf, i); \
|
|
DO4(buf, i + 4);
|
|
#define DO16(buf) \
|
|
DO8(buf, 0); \
|
|
DO8(buf, 8);
|
|
|
|
/* use NO_DIVIDE if your processor does not do division in hardware --
|
|
try it both ways to see which is faster */
|
|
#ifdef NO_DIVIDE
|
|
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
|
|
(thank you to John Reiser for pointing this out) */
|
|
#define CHOP(a) \
|
|
do { \
|
|
unsigned long tmp = a >> 16; \
|
|
a &= 0xffffUL; \
|
|
a += (tmp << 4) - tmp; \
|
|
} while (0)
|
|
#define MOD28(a) \
|
|
do { \
|
|
CHOP(a); \
|
|
if (a >= BASE) a -= BASE; \
|
|
} while (0)
|
|
#define MOD(a) \
|
|
do { \
|
|
CHOP(a); \
|
|
MOD28(a); \
|
|
} while (0)
|
|
#define MOD63(a) \
|
|
do { /* this assumes a is not negative */ \
|
|
int64_t tmp = a >> 32; \
|
|
a &= 0xffffffffL; \
|
|
a += (tmp << 8) - (tmp << 5) + tmp; \
|
|
tmp = a >> 16; \
|
|
a &= 0xffffL; \
|
|
a += (tmp << 4) - tmp; \
|
|
tmp = a >> 16; \
|
|
a &= 0xffffL; \
|
|
a += (tmp << 4) - tmp; \
|
|
if (a >= BASE) a -= BASE; \
|
|
} while (0)
|
|
#else
|
|
#define MOD(a) a %= BASE
|
|
#define MOD28(a) a %= BASE
|
|
#define MOD63(a) a %= BASE
|
|
#endif
|
|
|
|
uLong adler32_z(uLong adler, const Bytef *buf, size_t len) {
|
|
return adler32(adler, buf, len);
|
|
}
|
|
|
|
uLong adler32(uLong adler, const Bytef *buf, uInt len) {
|
|
unsigned long sum2;
|
|
unsigned n;
|
|
if (!IsTiny() && X86_HAVE(SSSE3) && buf && len >= 64) {
|
|
return adler32_simd_(adler, buf, len);
|
|
}
|
|
/* split Adler-32 into component sums */
|
|
sum2 = (adler >> 16) & 0xffff;
|
|
adler &= 0xffff;
|
|
/* in case user likes doing a byte at a time, keep it fast */
|
|
if (len == 1) {
|
|
adler += buf[0];
|
|
if (adler >= BASE) adler -= BASE;
|
|
sum2 += adler;
|
|
if (sum2 >= BASE) sum2 -= BASE;
|
|
return adler | (sum2 << 16);
|
|
}
|
|
/* initial Adler-32 value (deferred check for len == 1 speed) */
|
|
if (buf == Z_NULL) return 1L;
|
|
/* in case short lengths are provided, keep it somewhat fast */
|
|
if (len < 16) {
|
|
while (len--) {
|
|
adler += *buf++;
|
|
sum2 += adler;
|
|
}
|
|
if (adler >= BASE) adler -= BASE;
|
|
MOD28(sum2); /* only added so many BASE's */
|
|
return adler | (sum2 << 16);
|
|
}
|
|
/* do length NMAX blocks -- requires just one modulo operation */
|
|
while (len >= NMAX) {
|
|
len -= NMAX;
|
|
n = NMAX / 16; /* NMAX is divisible by 16 */
|
|
do {
|
|
DO16(buf); /* 16 sums unrolled */
|
|
buf += 16;
|
|
} while (--n);
|
|
MOD(adler);
|
|
MOD(sum2);
|
|
}
|
|
/* do remaining bytes (less than NMAX, still just one modulo) */
|
|
if (len) { /* avoid modulos if none remaining */
|
|
while (len >= 16) {
|
|
len -= 16;
|
|
DO16(buf);
|
|
buf += 16;
|
|
}
|
|
while (len--) {
|
|
adler += *buf++;
|
|
sum2 += adler;
|
|
}
|
|
MOD(adler);
|
|
MOD(sum2);
|
|
}
|
|
/* return recombined sums */
|
|
return adler | (sum2 << 16);
|
|
}
|
|
|
|
uLong adler32_combine(uLong adler1, uLong adler2, int64_t len2) {
|
|
unsigned long sum1;
|
|
unsigned long sum2;
|
|
unsigned rem;
|
|
/* for negative len, return invalid adler32 as a clue for debugging */
|
|
if (len2 < 0) return 0xffffffffUL;
|
|
/* the derivation of this formula is left as an exercise for the reader */
|
|
MOD63(len2); /* assumes len2 >= 0 */
|
|
rem = (unsigned)len2;
|
|
sum1 = adler1 & 0xffff;
|
|
sum2 = rem * sum1;
|
|
MOD(sum2);
|
|
sum1 += (adler2 & 0xffff) + BASE - 1;
|
|
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
|
if (sum1 >= BASE) sum1 -= BASE;
|
|
if (sum1 >= BASE) sum1 -= BASE;
|
|
if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
|
|
if (sum2 >= BASE) sum2 -= BASE;
|
|
return sum1 | (sum2 << 16);
|
|
}
|