570 lines
18 KiB
C
570 lines
18 KiB
C
/* micro-bunzip, a small, simple bzip2 decompression implementation.
|
|
Copyright 2003 by Rob Landley (rob@landley.net).
|
|
|
|
Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
|
|
which also acknowledges contributions by Mike Burrows, David Wheeler,
|
|
Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
|
|
Robert Sedgewick, and Jon L. Bentley.
|
|
|
|
I hereby release this code under the GNU Library General Public License
|
|
(LGPL) version 2, available at http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "libc/calls/calls.h"
|
|
#include "libc/mem/mem.h"
|
|
#include "libc/runtime/runtime.h"
|
|
#include "libc/stdio/stdio.h"
|
|
#include "libc/str/str.h"
|
|
#include "libc/sysv/consts/fileno.h"
|
|
|
|
/* Constants for huffman coding */
|
|
#define MAX_GROUPS 6
|
|
#define GROUP_SIZE 50 /* 64 would have been more efficient */
|
|
#define MAX_HUFCODE_BITS 20 /* Longest huffman code allowed */
|
|
#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
|
|
#define SYMBOL_RUNA 0
|
|
#define SYMBOL_RUNB 1
|
|
|
|
/* Status return values */
|
|
#define RETVAL_OK 0
|
|
#define RETVAL_LAST_BLOCK (-1)
|
|
#define RETVAL_NOT_BZIP_DATA (-2)
|
|
#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
|
|
#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
|
|
#define RETVAL_DATA_ERROR (-5)
|
|
#define RETVAL_OUT_OF_MEMORY (-6)
|
|
#define RETVAL_OBSOLETE_INPUT (-7)
|
|
|
|
/* Other housekeeping constants */
|
|
#define IOBUF_SIZE 4096
|
|
|
|
char *bunzip_errors[] = { NULL, "Bad file checksum", "Not bzip data",
|
|
"Unexpected input EOF", "Unexpected output EOF", "Data error",
|
|
"Out of memory", "Obsolete (pre 0.9.5) bzip format not supported." };
|
|
|
|
/* This is what we know about each huffman coding group */
|
|
struct group_data {
|
|
int limit[MAX_HUFCODE_BITS], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
|
|
char minLen, maxLen;
|
|
};
|
|
|
|
/* Structure holding all the housekeeping data, including IO buffers and
|
|
memory that persists between calls to bunzip */
|
|
typedef struct {
|
|
/* For I/O error handling */
|
|
jmp_buf jmpbuf;
|
|
/* Input stream, input buffer, input bit buffer */
|
|
int64_t in_fd, inbufCount, inbufPos;
|
|
unsigned char *inbuf;
|
|
unsigned int inbufBitCount, inbufBits;
|
|
/* Output buffer */
|
|
char outbuf[IOBUF_SIZE];
|
|
int outbufPos;
|
|
/* The CRC values stored in the block header and calculated from the data */
|
|
unsigned int crc32Table[256], headerCRC, dataCRC, totalCRC;
|
|
/* Intermediate buffer and its size (in bytes) */
|
|
unsigned int *dbuf, dbufSize;
|
|
/* State for interrupting output loop */
|
|
int writePos, writeRun, writeCount, writeCurrent;
|
|
|
|
/* These things are a bit too big to go on the stack */
|
|
unsigned char selectors[32768]; /* nSelectors=15 bits */
|
|
struct group_data groups[MAX_GROUPS]; /* huffman coding tables */
|
|
} bunzip_data;
|
|
|
|
/* Return the next nnn bits of input. All reads from the compressed
|
|
input are done through this function. All reads are big endian */
|
|
static unsigned int get_bits(bunzip_data *bd, char bits_wanted)
|
|
{
|
|
unsigned int bits = 0;
|
|
|
|
/* If we need to get more data from the byte buffer, do so. (Loop
|
|
getting one byte at a time to enforce endianness and avoid
|
|
unaligned access.) */
|
|
while (bd->inbufBitCount < bits_wanted) {
|
|
/* If we need to read more data from file into byte buffer, do so */
|
|
if (bd->inbufPos == bd->inbufCount) {
|
|
if (!(bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)))
|
|
longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF);
|
|
bd->inbufPos = 0;
|
|
}
|
|
/* Avoid 32-bit overflow (dump bit buffer to top of output) */
|
|
if (bd->inbufBitCount >= 24) {
|
|
bits = bd->inbufBits & ((1u << bd->inbufBitCount) - 1);
|
|
bits_wanted -= bd->inbufBitCount;
|
|
bits <<= bits_wanted;
|
|
bd->inbufBitCount = 0;
|
|
}
|
|
/* Grab next 8 bits of input from buffer. */
|
|
bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
|
|
bd->inbufBitCount += 8;
|
|
}
|
|
/* Calculate result */
|
|
bd->inbufBitCount -= bits_wanted;
|
|
bits |= (bd->inbufBits >> bd->inbufBitCount) & ((1u << bits_wanted) - 1);
|
|
|
|
return bits;
|
|
}
|
|
|
|
/* Decompress a block of text to into intermediate buffer */
|
|
|
|
static int read_bunzip_data(bunzip_data *bd)
|
|
{
|
|
struct group_data *hufGroup;
|
|
int dbufCount, nextSym, dbufSize, origPtr, groupCount, *base, *limit,
|
|
selector, i, j, k, t, runPos, symCount, symTotal, nSelectors,
|
|
byteCount[256];
|
|
unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
|
|
unsigned int *dbuf;
|
|
|
|
/* Read in header signature (borrowing mtfSymbol for temp space). */
|
|
for (i = 0; i < 6; i++)
|
|
mtfSymbol[i] = get_bits(bd, 8);
|
|
mtfSymbol[6] = 0;
|
|
/* Read CRC (which is stored big endian). */
|
|
bd->headerCRC = get_bits(bd, 32);
|
|
/* Is this the last block (with CRC for file)? */
|
|
if (!strcmp((char *)mtfSymbol, "\x17\x72\x45\x38\x50\x90"))
|
|
return RETVAL_LAST_BLOCK;
|
|
/* If it's not a valid data block, barf. */
|
|
if (strcmp((char *)mtfSymbol, "\x31\x41\x59\x26\x53\x59"))
|
|
return RETVAL_NOT_BZIP_DATA;
|
|
|
|
dbuf = bd->dbuf;
|
|
dbufSize = bd->dbufSize;
|
|
selectors = bd->selectors;
|
|
/* We can add support for blockRandomised if anybody complains.
|
|
There was some code for this in busybox 1.0.0-pre3, but nobody
|
|
ever noticed that it didn't actually work. */
|
|
if (get_bits(bd, 1))
|
|
return RETVAL_OBSOLETE_INPUT;
|
|
if ((origPtr = get_bits(bd, 24)) > dbufSize)
|
|
return RETVAL_DATA_ERROR;
|
|
/* mapping table: if some byte values are never used (encoding
|
|
things like ascii text), the compression code removes the gaps to
|
|
have fewer symbols to deal with, and writes a sparse bitfield
|
|
indicating which values were present. We make a translation table
|
|
to convert the symbols back to the corresponding bytes. */
|
|
t = get_bits(bd, 16);
|
|
memset(symToByte, 0, 256);
|
|
symTotal = 0;
|
|
for (i = 0; i < 16; i++) {
|
|
if (t & (1u << (15 - i))) {
|
|
k = get_bits(bd, 16);
|
|
for (j = 0; j < 16; j++)
|
|
if (k & (1u << (15 - j)))
|
|
symToByte[symTotal++] = (16 * i) + j;
|
|
}
|
|
}
|
|
/* How many different huffman coding groups does this block use? */
|
|
groupCount = get_bits(bd, 3);
|
|
if (groupCount < 2 || groupCount > MAX_GROUPS)
|
|
return RETVAL_DATA_ERROR;
|
|
/* nSelectors: Every GROUP_SIZE many symbols we select a new huffman
|
|
coding group. Read in the group selector list, which is stored as
|
|
MTF encoded bit runs. */
|
|
if (!(nSelectors = get_bits(bd, 15)))
|
|
return RETVAL_DATA_ERROR;
|
|
for (i = 0; i < groupCount; i++)
|
|
mtfSymbol[i] = i;
|
|
for (i = 0; i < nSelectors; i++) {
|
|
/* Get next value */
|
|
for (j = 0; get_bits(bd, 1); j++)
|
|
if (j >= groupCount)
|
|
return RETVAL_DATA_ERROR;
|
|
/* Decode MTF to get the next selector */
|
|
uc = mtfSymbol[j];
|
|
memmove(mtfSymbol + 1, mtfSymbol, j);
|
|
mtfSymbol[0] = selectors[i] = uc;
|
|
}
|
|
/* Read the huffman coding tables for each group, which code for symTotal
|
|
literal symbols, plus two run symbols (RUNA, RUNB) */
|
|
symCount = symTotal + 2;
|
|
for (j = 0; j < groupCount; j++) {
|
|
unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS + 1];
|
|
int minLen, maxLen, pp;
|
|
/* Read lengths */
|
|
t = get_bits(bd, 5);
|
|
for (i = 0; i < symCount; i++) {
|
|
for (;;) {
|
|
if (t < 1 || t > MAX_HUFCODE_BITS)
|
|
return RETVAL_DATA_ERROR;
|
|
if (!get_bits(bd, 1))
|
|
break;
|
|
if (!get_bits(bd, 1))
|
|
t++;
|
|
else
|
|
t--;
|
|
}
|
|
length[i] = t;
|
|
}
|
|
/* Find largest and smallest lengths in this group */
|
|
minLen = maxLen = length[0];
|
|
for (i = 1; i < symCount; i++) {
|
|
if (length[i] > maxLen)
|
|
maxLen = length[i];
|
|
else if (length[i] < minLen)
|
|
minLen = length[i];
|
|
}
|
|
/* Calculate permute[], base[], and limit[] tables from length[].
|
|
*
|
|
* permute[] is the lookup table for converting huffman coded symbols
|
|
* into decoded symbols. base[] is the amount to subtract from the
|
|
* value of a huffman symbol of a given length when using permute[].
|
|
*
|
|
* limit[] indicates the largest numerical value a symbol with a given
|
|
* number of bits can have. It lets us know when to stop reading.
|
|
*
|
|
* To use these, keep reading bits until value<=limit[bitcount] or
|
|
* you've read over 20 bits (error). Then the decoded symbol
|
|
* equals permute[hufcode_value-base[hufcode_bitcount]].
|
|
*/
|
|
hufGroup = bd->groups + j;
|
|
hufGroup->minLen = minLen;
|
|
hufGroup->maxLen = maxLen;
|
|
/* Note that minLen can't be smaller than 1, so we adjust the
|
|
base and limit array pointers so we're not always wasting the
|
|
first entry. We do this again when using them (during symbol
|
|
decoding).*/
|
|
base = hufGroup->base - 1;
|
|
limit = hufGroup->limit - 1;
|
|
/* Calculate permute[] */
|
|
pp = 0;
|
|
for (i = minLen; i <= maxLen; i++)
|
|
for (t = 0; t < symCount; t++)
|
|
if (length[t] == i)
|
|
hufGroup->permute[pp++] = t;
|
|
/* Count cumulative symbols coded for at each bit length */
|
|
for (i = minLen; i <= maxLen; i++)
|
|
temp[i] = limit[i] = 0;
|
|
for (i = 0; i < symCount; i++)
|
|
temp[length[i]]++;
|
|
/* Calculate limit[] (the largest symbol-coding value at each
|
|
bit length, which is (previous limit<<1)+symbols at this
|
|
level), and base[] (number of symbols to ignore at each bit
|
|
length, which is limit-cumulative count of symbols coded for
|
|
already). */
|
|
pp = t = 0;
|
|
for (i = minLen; i < maxLen; i++) {
|
|
pp += temp[i];
|
|
limit[i] = pp - 1;
|
|
pp <<= 1;
|
|
base[i + 1] = pp - (t += temp[i]);
|
|
}
|
|
limit[maxLen] = pp + temp[maxLen] - 1;
|
|
base[minLen] = 0;
|
|
}
|
|
/* We've finished reading and digesting the block header. Now read this
|
|
block's huffman coded symbols from the file and undo the huffman
|
|
coding and run length encoding, saving the result into
|
|
dbuf[dbufCount++]=uc */
|
|
|
|
/* Initialize symbol occurrence counters and symbol mtf table */
|
|
memset(byteCount, 0, 256 * sizeof(int));
|
|
for (i = 0; i < 256; i++)
|
|
mtfSymbol[i] = (unsigned char)i;
|
|
/* Loop through compressed symbols */
|
|
runPos = dbufCount = symCount = selector = 0;
|
|
for (;;) {
|
|
/* Determine which huffman coding group to use. */
|
|
if (!(symCount--)) {
|
|
symCount = GROUP_SIZE - 1;
|
|
if (selector >= nSelectors)
|
|
return RETVAL_DATA_ERROR;
|
|
hufGroup = bd->groups + selectors[selector++];
|
|
base = hufGroup->base - 1;
|
|
limit = hufGroup->limit - 1;
|
|
}
|
|
/* Read next huffman-coded symbol */
|
|
i = hufGroup->minLen;
|
|
j = get_bits(bd, i);
|
|
for (;;) {
|
|
if (i > hufGroup->maxLen)
|
|
return RETVAL_DATA_ERROR;
|
|
if (j <= limit[i])
|
|
break;
|
|
i++;
|
|
|
|
j = (j << 1) | get_bits(bd, 1);
|
|
}
|
|
/* Huffman decode nextSym (with bounds checking) */
|
|
j -= base[i];
|
|
if (j < 0 || j >= MAX_SYMBOLS)
|
|
return RETVAL_DATA_ERROR;
|
|
nextSym = hufGroup->permute[j];
|
|
/* If this is a repeated run, loop collecting data */
|
|
if (nextSym == SYMBOL_RUNA || nextSym == SYMBOL_RUNB) {
|
|
/* If this is the start of a new run, zero out counter */
|
|
if (!runPos) {
|
|
runPos = 1;
|
|
t = 0;
|
|
}
|
|
/* Neat trick that saves 1 symbol: instead of or-ing 0 or 1
|
|
at each bit position, add 1 or 2 instead. For example,
|
|
1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
|
|
You can make any bit pattern that way using 1 less symbol
|
|
than the basic or 0/1 method (except all bits 0, which
|
|
would use no symbols, but a run of length 0 doesn't mean
|
|
anything in this context). Thus space is saved. */
|
|
if (nextSym == SYMBOL_RUNA)
|
|
t += runPos;
|
|
else
|
|
t += 2 * runPos;
|
|
runPos <<= 1;
|
|
continue;
|
|
}
|
|
/* When we hit the first non-run symbol after a run, we now know
|
|
how many times to repeat the last literal, so append that
|
|
many copies to our buffer of decoded symbols (dbuf) now. (The
|
|
last literal used is the one at the head of the mtfSymbol
|
|
array.) */
|
|
if (runPos) {
|
|
runPos = 0;
|
|
if (dbufCount + t >= dbufSize)
|
|
return RETVAL_DATA_ERROR;
|
|
|
|
uc = symToByte[mtfSymbol[0]];
|
|
byteCount[uc] += t;
|
|
while (t--)
|
|
dbuf[dbufCount++] = uc;
|
|
}
|
|
/* Is this the terminating symbol? */
|
|
if (nextSym > symTotal)
|
|
break;
|
|
/* At this point, the symbol we just decoded indicates a new
|
|
literal character. Subtract one to get the position in the
|
|
MTF array at which this literal is currently to be found.
|
|
(Note that the result can't be -1 or 0, because 0 and 1 are
|
|
RUNA and RUNB. Another instance of the first symbol in the
|
|
mtf array, position 0, would have been handled as part of a
|
|
run.) */
|
|
if (dbufCount >= dbufSize)
|
|
return RETVAL_DATA_ERROR;
|
|
i = nextSym - 1;
|
|
uc = mtfSymbol[i];
|
|
memmove(mtfSymbol + 1, mtfSymbol, i);
|
|
mtfSymbol[0] = uc;
|
|
uc = symToByte[uc];
|
|
/* We have our literal byte. Save it into dbuf. */
|
|
byteCount[uc]++;
|
|
dbuf[dbufCount++] = (unsigned int)uc;
|
|
}
|
|
/* At this point, we've finished reading huffman-coded symbols and
|
|
compressed runs from the input stream. There are dbufCount many
|
|
of them in dbuf[]. Now undo the Burrows-Wheeler transform on
|
|
dbuf. See http://dogma.net/markn/articles/bwt/bwt.htm */
|
|
|
|
/* Now we know what dbufCount is, do a better sanity check on origPtr. */
|
|
if (origPtr < 0 || origPtr >= dbufCount)
|
|
return RETVAL_DATA_ERROR;
|
|
/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
|
|
j = 0;
|
|
for (i = 0; i < 256; i++) {
|
|
k = j + byteCount[i];
|
|
byteCount[i] = j;
|
|
j = k;
|
|
}
|
|
/* Figure out what order dbuf would be in if we sorted it. */
|
|
for (i = 0; i < dbufCount; i++) {
|
|
uc = (unsigned char)(dbuf[i] & 0xff);
|
|
dbuf[byteCount[uc]] |= (i << 8);
|
|
byteCount[uc]++;
|
|
}
|
|
/* blockRandomised support would go here. */
|
|
|
|
/* Using i as position, j as previous character, t as current character,
|
|
and uc as run count */
|
|
bd->dataCRC = 0xffffffffL;
|
|
/* Decode first byte by hand to initialize "previous" byte. Note
|
|
that it doesn't get output, and if the first three characters are
|
|
identical it doesn't qualify as a run (hence uc=255, which will
|
|
either wrap to 1 or get reset). */
|
|
if (dbufCount) {
|
|
bd->writePos = dbuf[origPtr];
|
|
bd->writeCurrent = (unsigned char)(bd->writePos & 0xff);
|
|
bd->writePos >>= 8;
|
|
bd->writeRun = -1;
|
|
}
|
|
bd->writeCount = dbufCount;
|
|
|
|
return RETVAL_OK;
|
|
}
|
|
|
|
/* Flush output buffer to disk */
|
|
static void flush_bunzip_outbuf(bunzip_data *bd, int64_t out_fd)
|
|
{
|
|
if (bd->outbufPos) {
|
|
if (write(out_fd, bd->outbuf, bd->outbufPos) != bd->outbufPos)
|
|
longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_OUTPUT_EOF);
|
|
bd->outbufPos = 0;
|
|
}
|
|
}
|
|
|
|
/* Undo burrows-wheeler transform on intermediate buffer to produce output.
|
|
If !len, write up to len bytes of data to buf. Otherwise write to out_fd.
|
|
Returns len ? bytes written : RETVAL_OK. Notice all errors negative #'s. */
|
|
static int write_bunzip_data(
|
|
bunzip_data *bd, int64_t out_fd, char *outbuf, int len)
|
|
{
|
|
unsigned int *dbuf = bd->dbuf;
|
|
int count, pos, current, run, copies, outbyte, previous, gotcount = 0;
|
|
|
|
for (;;) {
|
|
/* If last read was short due to end of file, return last block now */
|
|
if (bd->writeCount < 0)
|
|
return bd->writeCount;
|
|
/* If we need to refill dbuf, do it. */
|
|
if (!bd->writeCount) {
|
|
int i = read_bunzip_data(bd);
|
|
if (i) {
|
|
if (i == RETVAL_LAST_BLOCK) {
|
|
bd->writeCount = i;
|
|
return gotcount;
|
|
} else
|
|
return i;
|
|
}
|
|
}
|
|
/* Loop generating output */
|
|
count = bd->writeCount;
|
|
pos = bd->writePos;
|
|
current = bd->writeCurrent;
|
|
run = bd->writeRun;
|
|
while (count) {
|
|
/* If somebody (like busybox tar) wants a certain number of
|
|
bytes of data from memory instead of written to a file,
|
|
humor them */
|
|
if (len && bd->outbufPos >= len)
|
|
goto dataus_interruptus;
|
|
count--;
|
|
/* Follow sequence vector to undo Burrows-Wheeler transform */
|
|
previous = current;
|
|
pos = dbuf[pos];
|
|
current = pos & 0xff;
|
|
pos >>= 8;
|
|
/* Whenever we see 3 consecutive copies of the same byte,
|
|
the 4th is a repeat count */
|
|
if (run++ == 3) {
|
|
copies = current;
|
|
outbyte = previous;
|
|
current = -1;
|
|
} else {
|
|
copies = 1;
|
|
outbyte = current;
|
|
}
|
|
/* Output bytes to buffer, flushing to file if necessary */
|
|
while (copies--) {
|
|
if (bd->outbufPos == IOBUF_SIZE)
|
|
flush_bunzip_outbuf(bd, out_fd);
|
|
bd->outbuf[bd->outbufPos++] = outbyte;
|
|
bd->dataCRC = (bd->dataCRC << 8)
|
|
^ bd->crc32Table[(bd->dataCRC >> 24) ^ outbyte];
|
|
}
|
|
if (current != previous)
|
|
run = 0;
|
|
}
|
|
/* Decompression of this block completed successfully */
|
|
bd->dataCRC = ~(bd->dataCRC);
|
|
bd->totalCRC
|
|
= ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bd->dataCRC;
|
|
/* If this block had a CRC error, force file level CRC error. */
|
|
if (bd->dataCRC != bd->headerCRC) {
|
|
bd->totalCRC = bd->headerCRC + 1;
|
|
return RETVAL_LAST_BLOCK;
|
|
}
|
|
dataus_interruptus:
|
|
bd->writeCount = count;
|
|
if (len) {
|
|
gotcount += bd->outbufPos;
|
|
memcpy(outbuf, bd->outbuf, len);
|
|
/* If we got enough data, checkpoint loop state and return */
|
|
if ((len -= bd->outbufPos) < 1) {
|
|
bd->outbufPos -= len;
|
|
if (bd->outbufPos)
|
|
memmove(bd->outbuf, bd->outbuf + len, bd->outbufPos);
|
|
bd->writePos = pos;
|
|
bd->writeCurrent = current;
|
|
bd->writeRun = run;
|
|
return gotcount;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate the structure, read file header. If !len, src_fd contains
|
|
filehandle to read from. Else inbuf contains data. */
|
|
static int start_bunzip(bunzip_data **bdp, int64_t src_fd, char *inbuf, int len)
|
|
{
|
|
bunzip_data *bd;
|
|
unsigned int i, j, c;
|
|
|
|
/* Figure out how much data to allocate */
|
|
i = sizeof(bunzip_data);
|
|
if (!len)
|
|
i += IOBUF_SIZE;
|
|
/* Allocate bunzip_data. Most fields initialize to zero. */
|
|
if (!(bd = *bdp = malloc(i)))
|
|
return RETVAL_OUT_OF_MEMORY;
|
|
memset(bd, 0, sizeof(bunzip_data));
|
|
if (len) {
|
|
bd->inbuf = (unsigned char *)inbuf;
|
|
bd->inbufCount = len;
|
|
bd->in_fd = -1;
|
|
} else {
|
|
bd->inbuf = (unsigned char *)(bd + 1);
|
|
bd->in_fd = src_fd;
|
|
}
|
|
/* Init the CRC32 table (big endian) */
|
|
for (i = 0; i < 256; i++) {
|
|
c = i << 24;
|
|
for (j = 8; j; j--)
|
|
c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
|
|
bd->crc32Table[i] = c;
|
|
}
|
|
/* Setup for I/O error handling via longjmp */
|
|
i = setjmp(bd->jmpbuf);
|
|
if (i)
|
|
return i;
|
|
/* Ensure that file starts with "BZh" */
|
|
for (i = 0; i < 3; i++)
|
|
if (get_bits(bd, 8) != "BZh"[i])
|
|
return RETVAL_NOT_BZIP_DATA;
|
|
/* Next byte ascii '1'-'9', indicates block size in units of 100k of
|
|
uncompressed data. Allocate intermediate buffer for block. */
|
|
i = get_bits(bd, 8);
|
|
if (i < '1' || i > '9')
|
|
return RETVAL_NOT_BZIP_DATA;
|
|
bd->dbufSize = 100000 * (i - '0');
|
|
if (!(bd->dbuf = malloc(bd->dbufSize * sizeof(int))))
|
|
return RETVAL_OUT_OF_MEMORY;
|
|
return RETVAL_OK;
|
|
}
|
|
|
|
/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
|
|
not end of file.) */
|
|
static char *uncompressStream(int64_t src_fd, int64_t dst_fd)
|
|
{
|
|
bunzip_data *bd;
|
|
int i;
|
|
if (!(i = start_bunzip(&bd, src_fd, 0, 0))) {
|
|
i = write_bunzip_data(bd, dst_fd, 0, 0);
|
|
if (i == RETVAL_LAST_BLOCK && bd->headerCRC == bd->totalCRC)
|
|
i = RETVAL_OK;
|
|
}
|
|
flush_bunzip_outbuf(bd, dst_fd);
|
|
if (bd->dbuf)
|
|
free(bd->dbuf);
|
|
free(bd);
|
|
return bunzip_errors[-i];
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
char *err;
|
|
if (!(err = uncompressStream(STDIN_FILENO, STDOUT_FILENO))) {
|
|
return 0;
|
|
} else {
|
|
fprintf(stderr, "\n%s\n", err);
|
|
return 1;
|
|
}
|
|
}
|