cosmopolitan/third_party/lex/gen.c

2146 lines
54 KiB
C

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
│vi: set et ft=c ts=8 sw=8 fenc=utf-8 :vi│
└─────────────────────────────────────────────────────────────────────────────*/
/* clang-format off */
/* $OpenBSD: gen.c,v 1.15 2015/11/19 23:28:03 tedu Exp $ */
/* gen - actual generation (writing) of flex scanners */
/* Copyright (c) 1990 The Regents of the University of California. */
/* All rights reserved. */
/* This code is derived from software contributed to Berkeley by */
/* Vern Paxson. */
/* The United States Government has rights in this work pursuant */
/* to contract no. DE-AC03-76SF00098 between the United States */
/* Department of Energy and the University of California. */
/* This file is part of flex. */
/* Redistribution and use in source and binary forms, with or without */
/* modification, are permitted provided that the following conditions */
/* are met: */
/* 1. Redistributions of source code must retain the above copyright */
/* notice, this list of conditions and the following disclaimer. */
/* 2. Redistributions in binary form must reproduce the above copyright */
/* notice, this list of conditions and the following disclaimer in the */
/* documentation and/or other materials provided with the distribution. */
/* Neither the name of the University nor the names of its contributors */
/* may be used to endorse or promote products derived from this software */
/* without specific prior written permission. */
/* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
/* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
/* PURPOSE. */
#include "flexdef.h"
#include "libc/mem/mem.h"
#include "libc/fmt/fmt.h"
#include "libc/fmt/fmt.h"
#include "libc/str/str.h"
#include "tables.h"
/* declare functions that have forward references */
/* void gen_next_state PROTO((int)); */
void genecs PROTO((void));
/* void indent_put2s PROTO((const char *, const char *)); */
/* void indent_puts PROTO((const char *)); */
static int indent_level = 0; /* each level is 8 spaces */
#define indent_up() (++indent_level)
#define indent_down() (--indent_level)
#define set_indent(indent_val) indent_level = indent_val
/* Almost everything is done in terms of arrays starting at 1, so provide
* a null entry for the zero element of all C arrays. (The exception
* to this is that the fast table representation generally uses the
* 0 elements of its arrays, too.)
*/
static const char *
get_int16_decl(void)
{
return (gentables)
? "static yyconst flex_int16_t %s[%d] =\n { 0,\n"
: "static yyconst flex_int16_t * %s = 0;\n";
}
static const char *
get_int32_decl(void)
{
return (gentables)
? "static yyconst flex_int32_t %s[%d] =\n { 0,\n"
: "static yyconst flex_int32_t * %s = 0;\n";
}
static const char *
get_state_decl(void)
{
return (gentables)
? "static yyconst yy_state_type %s[%d] =\n { 0,\n"
: "static yyconst yy_state_type * %s = 0;\n";
}
/* Indent to the current level. */
void
do_indent()
{
int i = indent_level * 8;
while (i >= 8) {
outc('\t');
i -= 8;
}
while (i > 0) {
outc(' ');
--i;
}
}
/** Make the table for possible eol matches.
* @return the newly allocated rule_can_match_eol table
*/
static struct yytbl_data *
mkeoltbl(void)
{
int i;
flex_int8_t *tdata = NULL;
struct yytbl_data *tbl;
tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(tbl, YYTD_ID_RULE_CAN_MATCH_EOL);
tbl->td_flags = YYTD_DATA8;
tbl->td_lolen = num_rules + 1;
tbl->td_data = tdata =
calloc(tbl->td_lolen, sizeof(flex_int8_t));
for (i = 1; i <= num_rules; i++)
tdata[i] = rule_has_nl[i] ? 1 : 0;
buf_prints(&yydmap_buf,
"\t{YYTD_ID_RULE_CAN_MATCH_EOL, (void**)&yy_rule_can_match_eol, sizeof(%s)},\n",
"flex_int32_t");
return tbl;
}
/* Generate the table for possible eol matches. */
static void
geneoltbl()
{
int i;
outn("m4_ifdef( [[M4_YY_USE_LINENO]],[[");
outn("/* Table of booleans, true if rule could match eol. */");
out_str_dec(get_int32_decl(), "yy_rule_can_match_eol",
num_rules + 1);
if (gentables) {
for (i = 1; i <= num_rules; i++) {
out_dec("%d, ", rule_has_nl[i] ? 1 : 0);
/* format nicely, 20 numbers per line. */
if ((i % 20) == 19)
out("\n ");
}
out(" };\n");
}
outn("]])");
}
/* Generate the code to keep backing-up information. */
void
gen_backing_up()
{
if (reject || num_backing_up == 0)
return;
if (fullspd)
indent_puts("if ( yy_current_state[-1].yy_nxt )");
else
indent_puts("if ( yy_accept[yy_current_state] )");
indent_up();
indent_puts("{");
indent_puts("YY_G(yy_last_accepting_state) = yy_current_state;");
indent_puts("YY_G(yy_last_accepting_cpos) = yy_cp;");
indent_puts("}");
indent_down();
}
/* Generate the code to perform the backing up. */
void
gen_bu_action()
{
if (reject || num_backing_up == 0)
return;
set_indent(3);
indent_puts("case 0: /* must back up */");
indent_puts("/* undo the effects of YY_DO_BEFORE_ACTION */");
indent_puts("*yy_cp = YY_G(yy_hold_char);");
if (fullspd || fulltbl)
indent_puts("yy_cp = YY_G(yy_last_accepting_cpos) + 1;");
else
/*
* Backing-up info for compressed tables is taken \after/
* yy_cp has been incremented for the next state.
*/
indent_puts("yy_cp = YY_G(yy_last_accepting_cpos);");
indent_puts("yy_current_state = YY_G(yy_last_accepting_state);");
indent_puts("goto yy_find_action;");
outc('\n');
set_indent(0);
}
/** mkctbl - make full speed compressed transition table
* This is an array of structs; each struct a pair of integers.
* You should call mkssltbl() immediately after this.
* Then, I think, mkecstbl(). Arrrg.
* @return the newly allocated trans table
*/
static struct yytbl_data *
mkctbl(void)
{
int i;
struct yytbl_data *tbl = NULL;
flex_int32_t *tdata = NULL, curr = 0;
int end_of_buffer_action = num_rules + 1;
buf_prints(&yydmap_buf,
"\t{YYTD_ID_TRANSITION, (void**)&yy_transition, sizeof(%s)},\n",
((tblend + numecs + 1) >= INT16_MAX
|| long_align) ? "flex_int32_t" : "flex_int16_t");
tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(tbl, YYTD_ID_TRANSITION);
tbl->td_flags = YYTD_DATA32 | YYTD_STRUCT;
tbl->td_hilen = 0;
tbl->td_lolen = tblend + numecs + 1; /* number of structs */
tbl->td_data = tdata =
calloc(tbl->td_lolen * 2, sizeof(flex_int32_t));
/*
* We want the transition to be represented as the offset to the next
* state, not the actual state number, which is what it currently is.
* The offset is base[nxt[i]] - (base of current state)]. That's
* just the difference between the starting points of the two
* involved states (to - from).
*
* First, though, we need to find some way to put in our end-of-buffer
* flags and states. We do this by making a state with absolutely no
* transitions. We put it at the end of the table.
*/
/*
* We need to have room in nxt/chk for two more slots: One for the
* action and one for the end-of-buffer transition. We now *assume*
* that we're guaranteed the only character we'll try to index this
* nxt/chk pair with is EOB, i.e., 0, so we don't have to make sure
* there's room for jam entries for other characters.
*/
while (tblend + 2 >= current_max_xpairs)
expand_nxt_chk();
while (lastdfa + 1 >= current_max_dfas)
increase_max_dfas();
base[lastdfa + 1] = tblend + 2;
nxt[tblend + 1] = end_of_buffer_action;
chk[tblend + 1] = numecs + 1;
chk[tblend + 2] = 1; /* anything but EOB */
/* So that "make test" won't show arb. differences. */
nxt[tblend + 2] = 0;
/*
* Make sure every state has an end-of-buffer transition and an
* action #.
*/
for (i = 0; i <= lastdfa; ++i) {
int anum = dfaacc[i].dfaacc_state;
int offset = base[i];
chk[offset] = EOB_POSITION;
chk[offset - 1] = ACTION_POSITION;
nxt[offset - 1] = anum; /* action number */
}
for (i = 0; i <= tblend; ++i) {
if (chk[i] == EOB_POSITION) {
tdata[curr++] = 0;
tdata[curr++] = base[lastdfa + 1] - i;
} else if (chk[i] == ACTION_POSITION) {
tdata[curr++] = 0;
tdata[curr++] = nxt[i];
} else if (chk[i] > numecs || chk[i] == 0) {
tdata[curr++] = 0;
tdata[curr++] = 0;
} else { /* verify, transition */
tdata[curr++] = chk[i];
tdata[curr++] = base[nxt[i]] - (i - chk[i]);
}
}
/* Here's the final, end-of-buffer state. */
tdata[curr++] = chk[tblend + 1];
tdata[curr++] = nxt[tblend + 1];
tdata[curr++] = chk[tblend + 2];
tdata[curr++] = nxt[tblend + 2];
return tbl;
}
/** Make start_state_list table.
* @return the newly allocated start_state_list table
*/
static struct yytbl_data *
mkssltbl(void)
{
struct yytbl_data *tbl = NULL;
flex_int32_t *tdata = NULL;
flex_int32_t i;
tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(tbl, YYTD_ID_START_STATE_LIST);
tbl->td_flags = YYTD_DATA32 | YYTD_PTRANS;
tbl->td_hilen = 0;
tbl->td_lolen = lastsc * 2 + 1;
tbl->td_data = tdata =
calloc(tbl->td_lolen, sizeof(flex_int32_t));
for (i = 0; i <= lastsc * 2; ++i)
tdata[i] = base[i];
buf_prints(&yydmap_buf,
"\t{YYTD_ID_START_STATE_LIST, (void**)&yy_start_state_list, sizeof(%s)},\n",
"struct yy_trans_info*");
return tbl;
}
/* genctbl - generates full speed compressed transition table */
void
genctbl()
{
int i;
int end_of_buffer_action = num_rules + 1;
/* Table of verify for transition and offset to next state. */
if (gentables)
out_dec("static yyconst struct yy_trans_info yy_transition[%d] =\n {\n", tblend + numecs + 1);
else
outn("static yyconst struct yy_trans_info *yy_transition = 0;");
/*
* We want the transition to be represented as the offset to the next
* state, not the actual state number, which is what it currently is.
* The offset is base[nxt[i]] - (base of current state)]. That's
* just the difference between the starting points of the two
* involved states (to - from).
*
* First, though, we need to find some way to put in our end-of-buffer
* flags and states. We do this by making a state with absolutely no
* transitions. We put it at the end of the table.
*/
/*
* We need to have room in nxt/chk for two more slots: One for the
* action and one for the end-of-buffer transition. We now *assume*
* that we're guaranteed the only character we'll try to index this
* nxt/chk pair with is EOB, i.e., 0, so we don't have to make sure
* there's room for jam entries for other characters.
*/
while (tblend + 2 >= current_max_xpairs)
expand_nxt_chk();
while (lastdfa + 1 >= current_max_dfas)
increase_max_dfas();
base[lastdfa + 1] = tblend + 2;
nxt[tblend + 1] = end_of_buffer_action;
chk[tblend + 1] = numecs + 1;
chk[tblend + 2] = 1; /* anything but EOB */
/* So that "make test" won't show arb. differences. */
nxt[tblend + 2] = 0;
/*
* Make sure every state has an end-of-buffer transition and an
* action #.
*/
for (i = 0; i <= lastdfa; ++i) {
int anum = dfaacc[i].dfaacc_state;
int offset = base[i];
chk[offset] = EOB_POSITION;
chk[offset - 1] = ACTION_POSITION;
nxt[offset - 1] = anum; /* action number */
}
for (i = 0; i <= tblend; ++i) {
if (chk[i] == EOB_POSITION)
transition_struct_out(0, base[lastdfa + 1] - i);
else if (chk[i] == ACTION_POSITION)
transition_struct_out(0, nxt[i]);
else if (chk[i] > numecs || chk[i] == 0)
transition_struct_out(0, 0); /* unused slot */
else /* verify, transition */
transition_struct_out(chk[i],
base[nxt[i]] - (i -
chk[i]));
}
/* Here's the final, end-of-buffer state. */
transition_struct_out(chk[tblend + 1], nxt[tblend + 1]);
transition_struct_out(chk[tblend + 2], nxt[tblend + 2]);
if (gentables)
outn(" };\n");
/* Table of pointers to start states. */
if (gentables)
out_dec("static yyconst struct yy_trans_info *yy_start_state_list[%d] =\n", lastsc * 2 + 1);
else
outn("static yyconst struct yy_trans_info **yy_start_state_list =0;");
if (gentables) {
outn(" {");
for (i = 0; i <= lastsc * 2; ++i)
out_dec(" &yy_transition[%d],\n", base[i]);
dataend();
}
if (useecs)
genecs();
}
/* mkecstbl - Make equivalence-class tables. */
struct yytbl_data *
mkecstbl(void)
{
int i;
struct yytbl_data *tbl = NULL;
flex_int32_t *tdata = NULL;
tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(tbl, YYTD_ID_EC);
tbl->td_flags |= YYTD_DATA32;
tbl->td_hilen = 0;
tbl->td_lolen = csize;
tbl->td_data = tdata =
calloc(tbl->td_lolen, sizeof(flex_int32_t));
for (i = 1; i < csize; ++i) {
ecgroup[i] = ABS(ecgroup[i]);
tdata[i] = ecgroup[i];
}
buf_prints(&yydmap_buf,
"\t{YYTD_ID_EC, (void**)&yy_ec, sizeof(%s)},\n",
"flex_int32_t");
return tbl;
}
/* Generate equivalence-class tables. */
void
genecs()
{
int i, j;
int numrows;
out_str_dec(get_int32_decl(), "yy_ec", csize);
for (i = 1; i < csize; ++i) {
ecgroup[i] = ABS(ecgroup[i]);
mkdata(ecgroup[i]);
}
dataend();
if (trace) {
fputs(_("\n\nEquivalence Classes:\n\n"), stderr);
numrows = csize / 8;
for (j = 0; j < numrows; ++j) {
for (i = j; i < csize; i = i + numrows) {
fprintf(stderr, "%4s = %-2d",
readable_form(i), ecgroup[i]);
putc(' ', stderr);
}
putc('\n', stderr);
}
}
}
/* Generate the code to find the action number. */
void
gen_find_action()
{
if (fullspd)
indent_puts("yy_act = yy_current_state[-1].yy_nxt;");
else if (fulltbl)
indent_puts("yy_act = yy_accept[yy_current_state];");
else if (reject) {
indent_puts("yy_current_state = *--YY_G(yy_state_ptr);");
indent_puts("YY_G(yy_lp) = yy_accept[yy_current_state];");
outn("find_rule: /* we branch to this label when backing up */");
indent_puts
("for ( ; ; ) /* until we find what rule we matched */");
indent_up();
indent_puts("{");
indent_puts
("if ( YY_G(yy_lp) && YY_G(yy_lp) < yy_accept[yy_current_state + 1] )");
indent_up();
indent_puts("{");
indent_puts("yy_act = yy_acclist[YY_G(yy_lp)];");
if (variable_trailing_context_rules) {
indent_puts
("if ( yy_act & YY_TRAILING_HEAD_MASK ||");
indent_puts(" YY_G(yy_looking_for_trail_begin) )");
indent_up();
indent_puts("{");
indent_puts
("if ( yy_act == YY_G(yy_looking_for_trail_begin) )");
indent_up();
indent_puts("{");
indent_puts("YY_G(yy_looking_for_trail_begin) = 0;");
indent_puts("yy_act &= ~YY_TRAILING_HEAD_MASK;");
indent_puts("break;");
indent_puts("}");
indent_down();
indent_puts("}");
indent_down();
indent_puts
("else if ( yy_act & YY_TRAILING_MASK )");
indent_up();
indent_puts("{");
indent_puts
("YY_G(yy_looking_for_trail_begin) = yy_act & ~YY_TRAILING_MASK;");
indent_puts
("YY_G(yy_looking_for_trail_begin) |= YY_TRAILING_HEAD_MASK;");
if (real_reject) {
/*
* Remember matched text in case we back up
* due to REJECT.
*/
indent_puts
("YY_G(yy_full_match) = yy_cp;");
indent_puts
("YY_G(yy_full_state) = YY_G(yy_state_ptr);");
indent_puts("YY_G(yy_full_lp) = YY_G(yy_lp);");
}
indent_puts("}");
indent_down();
indent_puts("else");
indent_up();
indent_puts("{");
indent_puts("YY_G(yy_full_match) = yy_cp;");
indent_puts
("YY_G(yy_full_state) = YY_G(yy_state_ptr);");
indent_puts("YY_G(yy_full_lp) = YY_G(yy_lp);");
indent_puts("break;");
indent_puts("}");
indent_down();
indent_puts("++YY_G(yy_lp);");
indent_puts("goto find_rule;");
} else {
/*
* Remember matched text in case we back up due to
* trailing context plus REJECT.
*/
indent_up();
indent_puts("{");
indent_puts("YY_G(yy_full_match) = yy_cp;");
indent_puts("break;");
indent_puts("}");
indent_down();
}
indent_puts("}");
indent_down();
indent_puts("--yy_cp;");
/*
* We could consolidate the following two lines with those at
* the beginning, but at the cost of complaints that we're
* branching inside a loop.
*/
indent_puts("yy_current_state = *--YY_G(yy_state_ptr);");
indent_puts("YY_G(yy_lp) = yy_accept[yy_current_state];");
indent_puts("}");
indent_down();
} else { /* compressed */
indent_puts("yy_act = yy_accept[yy_current_state];");
if (interactive && !reject) {
/*
* Do the guaranteed-needed backing up to figure out
* the match.
*/
indent_puts("if ( yy_act == 0 )");
indent_up();
indent_puts("{ /* have to back up */");
indent_puts
("yy_cp = YY_G(yy_last_accepting_cpos);");
indent_puts
("yy_current_state = YY_G(yy_last_accepting_state);");
indent_puts
("yy_act = yy_accept[yy_current_state];");
indent_puts("}");
indent_down();
}
}
}
/* mkftbl - make the full table and return the struct .
* you should call mkecstbl() after this.
*/
struct yytbl_data *
mkftbl(void)
{
int i;
int end_of_buffer_action = num_rules + 1;
struct yytbl_data *tbl;
flex_int32_t *tdata = NULL;
tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(tbl, YYTD_ID_ACCEPT);
tbl->td_flags |= YYTD_DATA32;
tbl->td_hilen = 0; /* it's a one-dimensional array */
tbl->td_lolen = lastdfa + 1;
tbl->td_data = tdata =
calloc(tbl->td_lolen, sizeof(flex_int32_t));
dfaacc[end_of_buffer_state].dfaacc_state = end_of_buffer_action;
for (i = 1; i <= lastdfa; ++i) {
int anum = dfaacc[i].dfaacc_state;
tdata[i] = anum;
if (trace && anum)
fprintf(stderr, _("state # %d accepts: [%d]\n"),
i, anum);
}
buf_prints(&yydmap_buf,
"\t{YYTD_ID_ACCEPT, (void**)&yy_accept, sizeof(%s)},\n",
long_align ? "flex_int32_t" : "flex_int16_t");
return tbl;
}
/* genftbl - generate full transition table */
void
genftbl()
{
int i;
int end_of_buffer_action = num_rules + 1;
out_str_dec(long_align ? get_int32_decl() : get_int16_decl(),
"yy_accept", lastdfa + 1);
dfaacc[end_of_buffer_state].dfaacc_state = end_of_buffer_action;
for (i = 1; i <= lastdfa; ++i) {
int anum = dfaacc[i].dfaacc_state;
mkdata(anum);
if (trace && anum)
fprintf(stderr, _("state # %d accepts: [%d]\n"),
i, anum);
}
dataend();
if (useecs)
genecs();
/*
* Don't have to dump the actual full table entries - they were
* created on-the-fly.
*/
}
/* Generate the code to find the next compressed-table state. */
void
gen_next_compressed_state(char_map)
char *char_map;
{
indent_put2s("YY_CHAR yy_c = %s;", char_map);
/*
* Save the backing-up info \before/ computing the next state because
* we always compute one more state than needed - we always proceed
* until we reach a jam state
*/
gen_backing_up();
indent_puts
("while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )");
indent_up();
indent_puts("{");
indent_puts("yy_current_state = (int) yy_def[yy_current_state];");
if (usemecs) {
/*
* We've arrange it so that templates are never chained to
* one another. This means we can afford to make a very
* simple test to see if we need to convert to yy_c's
* meta-equivalence class without worrying about erroneously
* looking up the meta-equivalence class twice
*/
do_indent();
/* lastdfa + 2 is the beginning of the templates */
out_dec("if ( yy_current_state >= %d )\n", lastdfa + 2);
indent_up();
indent_puts("yy_c = yy_meta[(unsigned int) yy_c];");
indent_down();
}
indent_puts("}");
indent_down();
indent_puts
("yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];");
}
/* Generate the code to find the next match. */
void
gen_next_match()
{
/*
* NOTE - changes in here should be reflected in gen_next_state() and
* gen_NUL_trans().
*/
char *char_map = useecs ?
"yy_ec[YY_SC_TO_UI(*yy_cp)] " : "YY_SC_TO_UI(*yy_cp)";
char *char_map_2 = useecs ?
"yy_ec[YY_SC_TO_UI(*++yy_cp)] " : "YY_SC_TO_UI(*++yy_cp)";
if (fulltbl) {
if (gentables)
indent_put2s
("while ( (yy_current_state = yy_nxt[yy_current_state][ %s ]) > 0 )",
char_map);
else
indent_put2s
("while ( (yy_current_state = yy_nxt[yy_current_state*YY_NXT_LOLEN + %s ]) > 0 )",
char_map);
indent_up();
if (num_backing_up > 0) {
indent_puts("{");
gen_backing_up();
outc('\n');
}
indent_puts("++yy_cp;");
if (num_backing_up > 0)
indent_puts("}");
indent_down();
outc('\n');
indent_puts("yy_current_state = -yy_current_state;");
} else if (fullspd) {
indent_puts("{");
indent_puts
("yyconst struct yy_trans_info *yy_trans_info;\n");
indent_puts("YY_CHAR yy_c;\n");
indent_put2s("for ( yy_c = %s;", char_map);
indent_puts
(" (yy_trans_info = &yy_current_state[(unsigned int) yy_c])->");
indent_puts("yy_verify == yy_c;");
indent_put2s(" yy_c = %s )", char_map_2);
indent_up();
if (num_backing_up > 0)
indent_puts("{");
indent_puts("yy_current_state += yy_trans_info->yy_nxt;");
if (num_backing_up > 0) {
outc('\n');
gen_backing_up();
indent_puts("}");
}
indent_down();
indent_puts("}");
} else { /* compressed */
indent_puts("do");
indent_up();
indent_puts("{");
gen_next_state(false);
indent_puts("++yy_cp;");
indent_puts("}");
indent_down();
do_indent();
if (interactive)
out_dec("while ( yy_base[yy_current_state] != %d );\n", jambase);
else
out_dec("while ( yy_current_state != %d );\n",
jamstate);
if (!reject && !interactive) {
/*
* Do the guaranteed-needed backing up to figure out
* the match.
*/
indent_puts
("yy_cp = YY_G(yy_last_accepting_cpos);");
indent_puts
("yy_current_state = YY_G(yy_last_accepting_state);");
}
}
}
/* Generate the code to find the next state. */
void
gen_next_state(worry_about_NULs)
int worry_about_NULs;
{ /* NOTE - changes in here should be reflected
* in gen_next_match() */
char char_map[256];
if (worry_about_NULs && !nultrans) {
if (useecs)
snprintf(char_map, sizeof(char_map),
"(*yy_cp ? yy_ec[YY_SC_TO_UI(*yy_cp)] : %d)",
NUL_ec);
else
snprintf(char_map, sizeof(char_map),
"(*yy_cp ? YY_SC_TO_UI(*yy_cp) : %d)",
NUL_ec);
} else
strlcpy(char_map, useecs ?
"yy_ec[YY_SC_TO_UI(*yy_cp)] " : "YY_SC_TO_UI(*yy_cp)",
sizeof char_map);
if (worry_about_NULs && nultrans) {
if (!fulltbl && !fullspd)
/* Compressed tables back up *before* they match. */
gen_backing_up();
indent_puts("if ( *yy_cp )");
indent_up();
indent_puts("{");
}
if (fulltbl) {
if (gentables)
indent_put2s
("yy_current_state = yy_nxt[yy_current_state][%s];",
char_map);
else
indent_put2s
("yy_current_state = yy_nxt[yy_current_state*YY_NXT_LOLEN + %s];",
char_map);
} else if (fullspd)
indent_put2s
("yy_current_state += yy_current_state[%s].yy_nxt;",
char_map);
else
gen_next_compressed_state(char_map);
if (worry_about_NULs && nultrans) {
indent_puts("}");
indent_down();
indent_puts("else");
indent_up();
indent_puts
("yy_current_state = yy_NUL_trans[yy_current_state];");
indent_down();
}
if (fullspd || fulltbl)
gen_backing_up();
if (reject)
indent_puts("*YY_G(yy_state_ptr)++ = yy_current_state;");
}
/* Generate the code to make a NUL transition. */
void
gen_NUL_trans()
{ /* NOTE - changes in here should be reflected
* in gen_next_match() */
/*
* Only generate a definition for "yy_cp" if we'll generate code that
* uses it. Otherwise lint and the like complain.
*/
int need_backing_up = (num_backing_up > 0 && !reject);
if (need_backing_up && (!nultrans || fullspd || fulltbl))
/*
* We're going to need yy_cp lying around for the call below
* to gen_backing_up().
*/
indent_puts("char *yy_cp = YY_G(yy_c_buf_p);");
outc('\n');
if (nultrans) {
indent_puts
("yy_current_state = yy_NUL_trans[yy_current_state];");
indent_puts("yy_is_jam = (yy_current_state == 0);");
} else if (fulltbl) {
do_indent();
if (gentables)
out_dec("yy_current_state = yy_nxt[yy_current_state][%d];\n", NUL_ec);
else
out_dec("yy_current_state = yy_nxt[yy_current_state*YY_NXT_LOLEN + %d];\n", NUL_ec);
indent_puts("yy_is_jam = (yy_current_state <= 0);");
} else if (fullspd) {
do_indent();
out_dec("int yy_c = %d;\n", NUL_ec);
indent_puts
("yyconst struct yy_trans_info *yy_trans_info;\n");
indent_puts
("yy_trans_info = &yy_current_state[(unsigned int) yy_c];");
indent_puts("yy_current_state += yy_trans_info->yy_nxt;");
indent_puts
("yy_is_jam = (yy_trans_info->yy_verify != yy_c);");
} else {
char NUL_ec_str[20];
snprintf(NUL_ec_str, sizeof(NUL_ec_str), "%d", NUL_ec);
gen_next_compressed_state(NUL_ec_str);
do_indent();
out_dec("yy_is_jam = (yy_current_state == %d);\n",
jamstate);
if (reject) {
/*
* Only stack this state if it's a transition we
* actually make. If we stack it on a jam, then the
* state stack and yy_c_buf_p get out of sync.
*/
indent_puts("if ( ! yy_is_jam )");
indent_up();
indent_puts
("*YY_G(yy_state_ptr)++ = yy_current_state;");
indent_down();
}
}
/*
* If we've entered an accepting state, back up; note that compressed
* tables have *already* done such backing up, so we needn't bother
* with it again.
*/
if (need_backing_up && (fullspd || fulltbl)) {
outc('\n');
indent_puts("if ( ! yy_is_jam )");
indent_up();
indent_puts("{");
gen_backing_up();
indent_puts("}");
indent_down();
}
}
/* Generate the code to find the start state. */
void
gen_start_state()
{
if (fullspd) {
if (bol_needed) {
indent_puts
("yy_current_state = yy_start_state_list[YY_G(yy_start) + YY_AT_BOL()];");
} else
indent_puts
("yy_current_state = yy_start_state_list[YY_G(yy_start)];");
} else {
indent_puts("yy_current_state = YY_G(yy_start);");
if (bol_needed)
indent_puts("yy_current_state += YY_AT_BOL();");
if (reject) {
/* Set up for storing up states. */
outn("m4_ifdef( [[M4_YY_USES_REJECT]],\n[[");
indent_puts
("YY_G(yy_state_ptr) = YY_G(yy_state_buf);");
indent_puts
("*YY_G(yy_state_ptr)++ = yy_current_state;");
outn("]])");
}
}
}
/* gentabs - generate data statements for the transition tables */
void
gentabs()
{
int i, j, k, *accset, nacc, *acc_array, total_states;
int end_of_buffer_action = num_rules + 1;
struct yytbl_data *yyacc_tbl = 0, *yymeta_tbl = 0, *yybase_tbl = 0, *yydef_tbl = 0,
*yynxt_tbl = 0, *yychk_tbl = 0, *yyacclist_tbl = 0;
flex_int32_t *yyacc_data = 0, *yybase_data = 0, *yydef_data = 0, *yynxt_data = 0,
*yychk_data = 0, *yyacclist_data = 0;
flex_int32_t yybase_curr = 0, yyacclist_curr = 0, yyacc_curr = 0;
acc_array = allocate_integer_array(current_max_dfas);
nummt = 0;
/*
* The compressed table format jams by entering the "jam state",
* losing information about the previous state in the process. In
* order to recover the previous state, we effectively need to keep
* backing-up information.
*/
++num_backing_up;
if (reject) {
/*
* Write out accepting list and pointer list.
*
* First we generate the "yy_acclist" array. In the process, we
* compute the indices that will go into the "yy_accept"
* array, and save the indices in the dfaacc array.
*/
int EOB_accepting_list[2];
/* Set up accepting structures for the End Of Buffer state. */
EOB_accepting_list[0] = 0;
EOB_accepting_list[1] = end_of_buffer_action;
accsiz[end_of_buffer_state] = 1;
dfaacc[end_of_buffer_state].dfaacc_set =
EOB_accepting_list;
out_str_dec(long_align ? get_int32_decl() :
get_int16_decl(), "yy_acclist", MAX(numas,
1) + 1);
buf_prints(&yydmap_buf,
"\t{YYTD_ID_ACCLIST, (void**)&yy_acclist, sizeof(%s)},\n",
long_align ? "flex_int32_t" : "flex_int16_t");
yyacclist_tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(yyacclist_tbl, YYTD_ID_ACCLIST);
yyacclist_tbl->td_lolen = MAX(numas, 1) + 1;
yyacclist_tbl->td_data = yyacclist_data =
calloc(yyacclist_tbl->td_lolen, sizeof(flex_int32_t));
yyacclist_curr = 1;
j = 1; /* index into "yy_acclist" array */
for (i = 1; i <= lastdfa; ++i) {
acc_array[i] = j;
if (accsiz[i] != 0) {
accset = dfaacc[i].dfaacc_set;
nacc = accsiz[i];
if (trace)
fprintf(stderr,
_("state # %d accepts: "),
i);
for (k = 1; k <= nacc; ++k) {
int accnum = accset[k];
++j;
if (variable_trailing_context_rules
&& !(accnum &
YY_TRAILING_HEAD_MASK)
&& accnum > 0
&& accnum <= num_rules
&& rule_type[accnum] ==
RULE_VARIABLE) {
/*
* Special hack to flag
* accepting number as part
* of trailing context rule.
*/
accnum |= YY_TRAILING_MASK;
}
mkdata(accnum);
yyacclist_data[yyacclist_curr++] = accnum;
if (trace) {
fprintf(stderr, "[%d]",
accset[k]);
if (k < nacc)
fputs(", ",
stderr);
else
putc('\n',
stderr);
}
}
}
}
/* add accepting number for the "jam" state */
acc_array[i] = j;
dataend();
if (tablesext) {
yytbl_data_compress(yyacclist_tbl);
if (yytbl_data_fwrite(&tableswr, yyacclist_tbl) < 0)
flexerror(_("Could not write yyacclist_tbl"));
yytbl_data_destroy(yyacclist_tbl);
yyacclist_tbl = NULL;
}
} else {
dfaacc[end_of_buffer_state].dfaacc_state =
end_of_buffer_action;
for (i = 1; i <= lastdfa; ++i)
acc_array[i] = dfaacc[i].dfaacc_state;
/* add accepting number for jam state */
acc_array[i] = 0;
}
/* Begin generating yy_accept */
/*
* Spit out "yy_accept" array. If we're doing "reject", it'll be
* pointers into the "yy_acclist" array. Otherwise it's actual
* accepting numbers. In either case, we just dump the numbers.
*/
/*
* "lastdfa + 2" is the size of "yy_accept"; includes room for C
* arrays beginning at 0 and for "jam" state.
*/
k = lastdfa + 2;
if (reject)
/*
* We put a "cap" on the table associating lists of accepting
* numbers with state numbers. This is needed because we
* tell where the end of an accepting list is by looking at
* where the list for the next state starts.
*/
++k;
out_str_dec(long_align ? get_int32_decl() : get_int16_decl(),
"yy_accept", k);
buf_prints(&yydmap_buf,
"\t{YYTD_ID_ACCEPT, (void**)&yy_accept, sizeof(%s)},\n",
long_align ? "flex_int32_t" : "flex_int16_t");
yyacc_tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(yyacc_tbl, YYTD_ID_ACCEPT);
yyacc_tbl->td_lolen = k;
yyacc_tbl->td_data = yyacc_data =
calloc(yyacc_tbl->td_lolen, sizeof(flex_int32_t));
yyacc_curr = 1;
for (i = 1; i <= lastdfa; ++i) {
mkdata(acc_array[i]);
yyacc_data[yyacc_curr++] = acc_array[i];
if (!reject && trace && acc_array[i])
fprintf(stderr, _("state # %d accepts: [%d]\n"),
i, acc_array[i]);
}
/* Add entry for "jam" state. */
mkdata(acc_array[i]);
yyacc_data[yyacc_curr++] = acc_array[i];
if (reject) {
/* Add "cap" for the list. */
mkdata(acc_array[i]);
yyacc_data[yyacc_curr++] = acc_array[i];
}
dataend();
if (tablesext) {
yytbl_data_compress(yyacc_tbl);
if (yytbl_data_fwrite(&tableswr, yyacc_tbl) < 0)
flexerror(_("Could not write yyacc_tbl"));
yytbl_data_destroy(yyacc_tbl);
yyacc_tbl = NULL;
}
/* End generating yy_accept */
if (useecs) {
genecs();
if (tablesext) {
struct yytbl_data *tbl;
tbl = mkecstbl();
yytbl_data_compress(tbl);
if (yytbl_data_fwrite(&tableswr, tbl) < 0)
flexerror(_("Could not write ecstbl"));
yytbl_data_destroy(tbl);
tbl = 0;
}
}
if (usemecs) {
/* Begin generating yy_meta */
/*
* Write out meta-equivalence classes (used to index
* templates with).
*/
flex_int32_t *yymecs_data = NULL;
yymeta_tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(yymeta_tbl, YYTD_ID_META);
yymeta_tbl->td_lolen = numecs + 1;
yymeta_tbl->td_data = yymecs_data =
calloc(yymeta_tbl->td_lolen,
sizeof(flex_int32_t));
if (trace)
fputs(_("\n\nMeta-Equivalence Classes:\n"),
stderr);
out_str_dec(get_int32_decl(), "yy_meta", numecs + 1);
buf_prints(&yydmap_buf,
"\t{YYTD_ID_META, (void**)&yy_meta, sizeof(%s)},\n",
"flex_int32_t");
for (i = 1; i <= numecs; ++i) {
if (trace)
fprintf(stderr, "%d = %d\n",
i, ABS(tecbck[i]));
mkdata(ABS(tecbck[i]));
yymecs_data[i] = ABS(tecbck[i]);
}
dataend();
if (tablesext) {
yytbl_data_compress(yymeta_tbl);
if (yytbl_data_fwrite(&tableswr, yymeta_tbl) < 0)
flexerror(_
("Could not write yymeta_tbl"));
yytbl_data_destroy(yymeta_tbl);
yymeta_tbl = NULL;
}
/* End generating yy_meta */
}
total_states = lastdfa + numtemps;
/* Begin generating yy_base */
out_str_dec((tblend >= INT16_MAX || long_align) ?
get_int32_decl() : get_int16_decl(),
"yy_base", total_states + 1);
buf_prints(&yydmap_buf,
"\t{YYTD_ID_BASE, (void**)&yy_base, sizeof(%s)},\n",
(tblend >= INT16_MAX
|| long_align) ? "flex_int32_t" : "flex_int16_t");
yybase_tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(yybase_tbl, YYTD_ID_BASE);
yybase_tbl->td_lolen = total_states + 1;
yybase_tbl->td_data = yybase_data =
calloc(yybase_tbl->td_lolen,
sizeof(flex_int32_t));
yybase_curr = 1;
for (i = 1; i <= lastdfa; ++i) {
int d = def[i];
if (base[i] == JAMSTATE)
base[i] = jambase;
if (d == JAMSTATE)
def[i] = jamstate;
else if (d < 0) {
/* Template reference. */
++tmpuses;
def[i] = lastdfa - d + 1;
}
mkdata(base[i]);
yybase_data[yybase_curr++] = base[i];
}
/* Generate jam state's base index. */
mkdata(base[i]);
yybase_data[yybase_curr++] = base[i];
for (++i /* skip jam state */ ; i <= total_states; ++i) {
mkdata(base[i]);
yybase_data[yybase_curr++] = base[i];
def[i] = jamstate;
}
dataend();
if (tablesext) {
yytbl_data_compress(yybase_tbl);
if (yytbl_data_fwrite(&tableswr, yybase_tbl) < 0)
flexerror(_("Could not write yybase_tbl"));
yytbl_data_destroy(yybase_tbl);
yybase_tbl = NULL;
}
/* End generating yy_base */
/* Begin generating yy_def */
out_str_dec((total_states >= INT16_MAX || long_align) ?
get_int32_decl() : get_int16_decl(),
"yy_def", total_states + 1);
buf_prints(&yydmap_buf,
"\t{YYTD_ID_DEF, (void**)&yy_def, sizeof(%s)},\n",
(total_states >= INT16_MAX
|| long_align) ? "flex_int32_t" : "flex_int16_t");
yydef_tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(yydef_tbl, YYTD_ID_DEF);
yydef_tbl->td_lolen = total_states + 1;
yydef_tbl->td_data = yydef_data =
calloc(yydef_tbl->td_lolen, sizeof(flex_int32_t));
for (i = 1; i <= total_states; ++i) {
mkdata(def[i]);
yydef_data[i] = def[i];
}
dataend();
if (tablesext) {
yytbl_data_compress(yydef_tbl);
if (yytbl_data_fwrite(&tableswr, yydef_tbl) < 0)
flexerror(_("Could not write yydef_tbl"));
yytbl_data_destroy(yydef_tbl);
yydef_tbl = NULL;
}
/* End generating yy_def */
/* Begin generating yy_nxt */
out_str_dec((total_states >= INT16_MAX || long_align) ?
get_int32_decl() : get_int16_decl(), "yy_nxt",
tblend + 1);
buf_prints(&yydmap_buf,
"\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
(total_states >= INT16_MAX
|| long_align) ? "flex_int32_t" : "flex_int16_t");
yynxt_tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(yynxt_tbl, YYTD_ID_NXT);
yynxt_tbl->td_lolen = tblend + 1;
yynxt_tbl->td_data = yynxt_data =
calloc(yynxt_tbl->td_lolen, sizeof(flex_int32_t));
for (i = 1; i <= tblend; ++i) {
/*
* Note, the order of the following test is important. If
* chk[i] is 0, then nxt[i] is undefined.
*/
if (chk[i] == 0 || nxt[i] == 0)
nxt[i] = jamstate; /* new state is the JAM state */
mkdata(nxt[i]);
yynxt_data[i] = nxt[i];
}
dataend();
if (tablesext) {
yytbl_data_compress(yynxt_tbl);
if (yytbl_data_fwrite(&tableswr, yynxt_tbl) < 0)
flexerror(_("Could not write yynxt_tbl"));
yytbl_data_destroy(yynxt_tbl);
yynxt_tbl = NULL;
}
/* End generating yy_nxt */
/* Begin generating yy_chk */
out_str_dec((total_states >= INT16_MAX || long_align) ?
get_int32_decl() : get_int16_decl(), "yy_chk",
tblend + 1);
buf_prints(&yydmap_buf,
"\t{YYTD_ID_CHK, (void**)&yy_chk, sizeof(%s)},\n",
(total_states >= INT16_MAX
|| long_align) ? "flex_int32_t" : "flex_int16_t");
yychk_tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(yychk_tbl, YYTD_ID_CHK);
yychk_tbl->td_lolen = tblend + 1;
yychk_tbl->td_data = yychk_data =
calloc(yychk_tbl->td_lolen, sizeof(flex_int32_t));
for (i = 1; i <= tblend; ++i) {
if (chk[i] == 0)
++nummt;
mkdata(chk[i]);
yychk_data[i] = chk[i];
}
dataend();
if (tablesext) {
yytbl_data_compress(yychk_tbl);
if (yytbl_data_fwrite(&tableswr, yychk_tbl) < 0)
flexerror(_("Could not write yychk_tbl"));
yytbl_data_destroy(yychk_tbl);
yychk_tbl = NULL;
}
/* End generating yy_chk */
free(acc_array);
}
/* Write out a formatted string (with a secondary string argument) at the
* current indentation level, adding a final newline.
*/
void
indent_put2s(fmt, arg)
const char *fmt, *arg;
{
do_indent();
out_str(fmt, arg);
outn("");
}
/* Write out a string at the current indentation level, adding a final
* newline.
*/
void
indent_puts(str)
const char *str;
{
do_indent();
outn(str);
}
/* make_tables - generate transition tables and finishes generating output file
*/
void
make_tables()
{
int i;
int did_eof_rule = false;
struct yytbl_data *yynultrans_tbl;
skelout(); /* %% [2.0] - break point in skel */
/*
* First, take care of YY_DO_BEFORE_ACTION depending on yymore being
* used.
*/
set_indent(1);
if (yymore_used && !yytext_is_array) {
indent_puts("YY_G(yytext_ptr) -= YY_G(yy_more_len); \\");
indent_puts
("yyleng = (size_t) (yy_cp - YY_G(yytext_ptr)); \\");
} else
indent_puts("yyleng = (size_t) (yy_cp - yy_bp); \\");
/* Now also deal with copying yytext_ptr to yytext if needed. */
skelout(); /* %% [3.0] - break point in skel */
if (yytext_is_array) {
if (yymore_used)
indent_puts
("if ( yyleng + YY_G(yy_more_offset) >= YYLMAX ) \\");
else
indent_puts("if ( yyleng >= YYLMAX ) \\");
indent_up();
indent_puts
("YY_FATAL_ERROR( \"token too large, exceeds YYLMAX\" ); \\");
indent_down();
if (yymore_used) {
indent_puts
("yy_flex_strncpy( &yytext[YY_G(yy_more_offset)], YY_G(yytext_ptr), yyleng + 1 M4_YY_CALL_LAST_ARG); \\");
indent_puts("yyleng += YY_G(yy_more_offset); \\");
indent_puts
("YY_G(yy_prev_more_offset) = YY_G(yy_more_offset); \\");
indent_puts("YY_G(yy_more_offset) = 0; \\");
} else {
indent_puts
("yy_flex_strncpy( yytext, YY_G(yytext_ptr), yyleng + 1 M4_YY_CALL_LAST_ARG); \\");
}
}
set_indent(0);
skelout(); /* %% [4.0] - break point in skel */
/* This is where we REALLY begin generating the tables. */
out_dec("#define YY_NUM_RULES %d\n", num_rules);
out_dec("#define YY_END_OF_BUFFER %d\n", num_rules + 1);
if (fullspd) {
/*
* Need to define the transet type as a size large enough to
* hold the biggest offset.
*/
int total_table_size = tblend + numecs + 1;
char *trans_offset_type =
(total_table_size >= INT16_MAX || long_align) ?
"flex_int32_t" : "flex_int16_t";
set_indent(0);
indent_puts("struct yy_trans_info");
indent_up();
indent_puts("{");
/*
* We require that yy_verify and yy_nxt must be of the same
* size int.
*/
indent_put2s("%s yy_verify;", trans_offset_type);
/*
* In cases where its sister yy_verify *is* a "yes, there is
* a transition", yy_nxt is the offset (in records) to the
* next state. In most cases where there is no transition,
* the value of yy_nxt is irrelevant. If yy_nxt is the -1th
* record of a state, though, then yy_nxt is the action
* number for that state.
*/
indent_put2s("%s yy_nxt;", trans_offset_type);
indent_puts("};");
indent_down();
} else {
/*
* We generate a bogus 'struct yy_trans_info' data type so we
* can guarantee that it is always declared in the skel. This
* is so we can compile "sizeof(struct yy_trans_info)" in any
* scanner.
*/
indent_puts
("/* This struct is not used in this scanner,");
indent_puts(" but its presence is necessary. */");
indent_puts("struct yy_trans_info");
indent_up();
indent_puts("{");
indent_puts("flex_int32_t yy_verify;");
indent_puts("flex_int32_t yy_nxt;");
indent_puts("};");
indent_down();
}
if (fullspd) {
genctbl();
if (tablesext) {
struct yytbl_data *tbl;
tbl = mkctbl();
yytbl_data_compress(tbl);
if (yytbl_data_fwrite(&tableswr, tbl) < 0)
flexerror(_("Could not write ftbl"));
yytbl_data_destroy(tbl);
tbl = mkssltbl();
yytbl_data_compress(tbl);
if (yytbl_data_fwrite(&tableswr, tbl) < 0)
flexerror(_("Could not write ssltbl"));
yytbl_data_destroy(tbl);
tbl = 0;
if (useecs) {
tbl = mkecstbl();
yytbl_data_compress(tbl);
if (yytbl_data_fwrite(&tableswr, tbl) < 0)
flexerror(_
("Could not write ecstbl"));
yytbl_data_destroy(tbl);
tbl = 0;
}
}
} else if (fulltbl) {
genftbl();
if (tablesext) {
struct yytbl_data *tbl;
tbl = mkftbl();
yytbl_data_compress(tbl);
if (yytbl_data_fwrite(&tableswr, tbl) < 0)
flexerror(_("Could not write ftbl"));
yytbl_data_destroy(tbl);
tbl = 0;
if (useecs) {
tbl = mkecstbl();
yytbl_data_compress(tbl);
if (yytbl_data_fwrite(&tableswr, tbl) < 0)
flexerror(_
("Could not write ecstbl"));
yytbl_data_destroy(tbl);
tbl = 0;
}
}
} else
gentabs();
if (do_yylineno) {
geneoltbl();
if (tablesext) {
struct yytbl_data *tbl;
tbl = mkeoltbl();
yytbl_data_compress(tbl);
if (yytbl_data_fwrite(&tableswr, tbl) < 0)
flexerror(_("Could not write eoltbl"));
yytbl_data_destroy(tbl);
tbl = 0;
}
}
/*
* Definitions for backing up. We don't need them if REJECT is being
* used because then we use an alternative backin-up technique
* instead.
*/
if (num_backing_up > 0 && !reject) {
if (!C_plus_plus && !reentrant) {
indent_puts
("static yy_state_type yy_last_accepting_state;");
indent_puts
("static char *yy_last_accepting_cpos;\n");
}
}
if (nultrans) {
flex_int32_t *yynultrans_data = NULL;
/* Begin generating yy_NUL_trans */
out_str_dec(get_state_decl(), "yy_NUL_trans",
lastdfa + 1);
buf_prints(&yydmap_buf,
"\t{YYTD_ID_NUL_TRANS, (void**)&yy_NUL_trans, sizeof(%s)},\n",
(fullspd) ? "struct yy_trans_info*" :
"flex_int32_t");
yynultrans_tbl = calloc(1, sizeof(struct yytbl_data));
yytbl_data_init(yynultrans_tbl, YYTD_ID_NUL_TRANS);
if (fullspd)
yynultrans_tbl->td_flags |= YYTD_PTRANS;
yynultrans_tbl->td_lolen = lastdfa + 1;
yynultrans_tbl->td_data = yynultrans_data =
calloc(yynultrans_tbl->td_lolen,
sizeof(flex_int32_t));
for (i = 1; i <= lastdfa; ++i) {
if (fullspd) {
out_dec(" &yy_transition[%d],\n",
base[i]);
yynultrans_data[i] = base[i];
} else {
mkdata(nultrans[i]);
yynultrans_data[i] = nultrans[i];
}
}
dataend();
if (tablesext) {
yytbl_data_compress(yynultrans_tbl);
if (yytbl_data_fwrite(&tableswr, yynultrans_tbl) < 0)
flexerror(_
("Could not write yynultrans_tbl"));
yytbl_data_destroy(yynultrans_tbl);
yynultrans_tbl = NULL;
}
/* End generating yy_NUL_trans */
}
if (!C_plus_plus && !reentrant) {
indent_puts("extern int yy_flex_debug;");
indent_put2s("int yy_flex_debug = %s;\n",
ddebug ? "1" : "0");
}
if (ddebug) { /* Spit out table mapping rules to line
* numbers. */
out_str_dec(long_align ? get_int32_decl() :
get_int16_decl(), "yy_rule_linenum",
num_rules);
for (i = 1; i < num_rules; ++i)
mkdata(rule_linenum[i]);
dataend();
}
if (reject) {
outn("m4_ifdef( [[M4_YY_USES_REJECT]],\n[[");
/* Declare state buffer variables. */
if (!C_plus_plus && !reentrant) {
outn("static yy_state_type *yy_state_buf=0, *yy_state_ptr=0;");
outn("static char *yy_full_match;");
outn("static int yy_lp;");
}
if (variable_trailing_context_rules) {
if (!C_plus_plus && !reentrant) {
outn("static int yy_looking_for_trail_begin = 0;");
outn("static int yy_full_lp;");
outn("static int *yy_full_state;");
}
out_hex("#define YY_TRAILING_MASK 0x%x\n",
(unsigned int) YY_TRAILING_MASK);
out_hex("#define YY_TRAILING_HEAD_MASK 0x%x\n",
(unsigned int) YY_TRAILING_HEAD_MASK);
}
outn("#define REJECT \\");
outn("{ \\");
outn("*yy_cp = YY_G(yy_hold_char); /* undo effects of setting up yytext */ \\");
outn("yy_cp = YY_G(yy_full_match); /* restore poss. backed-over text */ \\");
if (variable_trailing_context_rules) {
outn("YY_G(yy_lp) = YY_G(yy_full_lp); /* restore orig. accepting pos. */ \\");
outn("YY_G(yy_state_ptr) = YY_G(yy_full_state); /* restore orig. state */ \\");
outn("yy_current_state = *YY_G(yy_state_ptr); /* restore curr. state */ \\");
}
outn("++YY_G(yy_lp); \\");
outn("goto find_rule; \\");
outn("}");
outn("]])\n");
} else {
outn("/* The intent behind this definition is that it'll catch");
outn(" * any uses of REJECT which flex missed.");
outn(" */");
outn("#define REJECT reject_used_but_not_detected");
}
if (yymore_used) {
if (!C_plus_plus) {
if (yytext_is_array) {
if (!reentrant) {
indent_puts("static int yy_more_offset = 0;");
indent_puts("static int yy_prev_more_offset = 0;");
}
} else if (!reentrant) {
indent_puts
("static int yy_more_flag = 0;");
indent_puts
("static int yy_more_len = 0;");
}
}
if (yytext_is_array) {
indent_puts
("#define yymore() (YY_G(yy_more_offset) = yy_flex_strlen( yytext M4_YY_CALL_LAST_ARG))");
indent_puts("#define YY_NEED_STRLEN");
indent_puts("#define YY_MORE_ADJ 0");
indent_puts
("#define YY_RESTORE_YY_MORE_OFFSET \\");
indent_up();
indent_puts("{ \\");
indent_puts
("YY_G(yy_more_offset) = YY_G(yy_prev_more_offset); \\");
indent_puts("yyleng -= YY_G(yy_more_offset); \\");
indent_puts("}");
indent_down();
} else {
indent_puts
("#define yymore() (YY_G(yy_more_flag) = 1)");
indent_puts
("#define YY_MORE_ADJ YY_G(yy_more_len)");
indent_puts("#define YY_RESTORE_YY_MORE_OFFSET");
}
} else {
indent_puts
("#define yymore() yymore_used_but_not_detected");
indent_puts("#define YY_MORE_ADJ 0");
indent_puts("#define YY_RESTORE_YY_MORE_OFFSET");
}
if (!C_plus_plus) {
if (yytext_is_array) {
outn("#ifndef YYLMAX");
outn("#define YYLMAX 8192");
outn("#endif\n");
if (!reentrant) {
outn("char yytext[YYLMAX];");
outn("char *yytext_ptr;");
}
} else {
if (!reentrant)
outn("char *yytext;");
}
}
out(&action_array[defs1_offset]);
line_directive_out(stdout, 0);
skelout(); /* %% [5.0] - break point in skel */
if (!C_plus_plus) {
if (use_read) {
outn("\terrno=0; \\");
outn("\twhile ( (result = read( fileno(yyin), (char *) buf, max_size )) < 0 ) \\");
outn("\t{ \\");
outn("\t\tif( errno != EINTR) \\");
outn("\t\t{ \\");
outn("\t\t\tYY_FATAL_ERROR( \"input in flex scanner failed\" ); \\");
outn("\t\t\tbreak; \\");
outn("\t\t} \\");
outn("\t\terrno=0; \\");
outn("\t\tclearerr(yyin); \\");
outn("\t}\\");
} else {
outn("\tif ( YY_CURRENT_BUFFER_LVALUE->yy_is_interactive ) \\");
outn("\t\t{ \\");
outn("\t\tint c = '*'; \\");
outn("\t\tsize_t n; \\");
outn("\t\tfor ( n = 0; n < max_size && \\");
outn("\t\t\t (c = getc( yyin )) != EOF && c != '\\n'; ++n ) \\");
outn("\t\t\tbuf[n] = (char) c; \\");
outn("\t\tif ( c == '\\n' ) \\");
outn("\t\t\tbuf[n++] = (char) c; \\");
outn("\t\tif ( c == EOF && ferror( yyin ) ) \\");
outn("\t\t\tYY_FATAL_ERROR( \"input in flex scanner failed\" ); \\");
outn("\t\tresult = n; \\");
outn("\t\t} \\");
outn("\telse \\");
outn("\t\t{ \\");
outn("\t\terrno=0; \\");
outn("\t\twhile ( (result = fread(buf, 1, max_size, yyin))==0 && ferror(yyin)) \\");
outn("\t\t\t{ \\");
outn("\t\t\tif( errno != EINTR) \\");
outn("\t\t\t\t{ \\");
outn("\t\t\t\tYY_FATAL_ERROR( \"input in flex scanner failed\" ); \\");
outn("\t\t\t\tbreak; \\");
outn("\t\t\t\t} \\");
outn("\t\t\terrno=0; \\");
outn("\t\t\tclearerr(yyin); \\");
outn("\t\t\t} \\");
outn("\t\t}\\");
}
}
skelout(); /* %% [6.0] - break point in skel */
indent_puts("#define YY_RULE_SETUP \\");
indent_up();
if (bol_needed) {
indent_puts("if ( yyleng > 0 ) \\");
indent_up();
indent_puts("YY_CURRENT_BUFFER_LVALUE->yy_at_bol = \\");
indent_puts("\t\t(yytext[yyleng - 1] == '\\n'); \\");
indent_down();
}
indent_puts("YY_USER_ACTION");
indent_down();
skelout(); /* %% [7.0] - break point in skel */
/* Copy prolog to output file. */
out(&action_array[prolog_offset]);
line_directive_out(stdout, 0);
skelout(); /* %% [8.0] - break point in skel */
set_indent(2);
if (yymore_used && !yytext_is_array) {
indent_puts("YY_G(yy_more_len) = 0;");
indent_puts("if ( YY_G(yy_more_flag) )");
indent_up();
indent_puts("{");
indent_puts
("YY_G(yy_more_len) = YY_G(yy_c_buf_p) - YY_G(yytext_ptr);");
indent_puts("YY_G(yy_more_flag) = 0;");
indent_puts("}");
indent_down();
}
skelout(); /* %% [9.0] - break point in skel */
gen_start_state();
/* Note, don't use any indentation. */
outn("yy_match:");
gen_next_match();
skelout(); /* %% [10.0] - break point in skel */
set_indent(2);
gen_find_action();
skelout(); /* %% [11.0] - break point in skel */
outn("m4_ifdef( [[M4_YY_USE_LINENO]],[[");
indent_puts
("if ( yy_act != YY_END_OF_BUFFER && yy_rule_can_match_eol[yy_act] )");
indent_up();
indent_puts("{");
indent_puts("yy_size_t yyl;");
do_indent();
out_str("for ( yyl = %s; yyl < yyleng; ++yyl )\n",
yymore_used ? (yytext_is_array ? "YY_G(yy_prev_more_offset)" :
"YY_G(yy_more_len)") : "0");
indent_up();
indent_puts("if ( yytext[yyl] == '\\n' )");
indent_up();
indent_puts("M4_YY_INCR_LINENO();");
indent_down();
indent_down();
indent_puts("}");
indent_down();
outn("]])");
skelout(); /* %% [12.0] - break point in skel */
if (ddebug) {
indent_puts("if ( yy_flex_debug )");
indent_up();
indent_puts("{");
indent_puts("if ( yy_act == 0 )");
indent_up();
indent_puts(C_plus_plus ?
"std::cerr << \"--scanner backing up\\n\";" :
"fprintf( stderr, \"--scanner backing up\\n\" );");
indent_down();
do_indent();
out_dec("else if ( yy_act < %d )\n", num_rules);
indent_up();
if (C_plus_plus) {
indent_puts
("std::cerr << \"--accepting rule at line \" << yy_rule_linenum[yy_act] <<");
indent_puts
(" \"(\\\"\" << yytext << \"\\\")\\n\";");
} else {
indent_puts
("fprintf( stderr, \"--accepting rule at line %ld (\\\"%s\\\")\\n\",");
indent_puts
(" (long)yy_rule_linenum[yy_act], yytext );");
}
indent_down();
do_indent();
out_dec("else if ( yy_act == %d )\n", num_rules);
indent_up();
if (C_plus_plus) {
indent_puts
("std::cerr << \"--accepting default rule (\\\"\" << yytext << \"\\\")\\n\";");
} else {
indent_puts
("fprintf( stderr, \"--accepting default rule (\\\"%s\\\")\\n\",");
indent_puts(" yytext );");
}
indent_down();
do_indent();
out_dec("else if ( yy_act == %d )\n", num_rules + 1);
indent_up();
indent_puts(C_plus_plus ?
"std::cerr << \"--(end of buffer or a NUL)\\n\";" :
"fprintf( stderr, \"--(end of buffer or a NUL)\\n\" );");
indent_down();
do_indent();
outn("else");
indent_up();
if (C_plus_plus) {
indent_puts
("std::cerr << \"--EOF (start condition \" << YY_START << \")\\n\";");
} else {
indent_puts
("fprintf( stderr, \"--EOF (start condition %d)\\n\", YY_START );");
}
indent_down();
indent_puts("}");
indent_down();
}
/* Copy actions to output file. */
skelout(); /* %% [13.0] - break point in skel */
indent_up();
gen_bu_action();
out(&action_array[action_offset]);
line_directive_out(stdout, 0);
/* generate cases for any missing EOF rules */
for (i = 1; i <= lastsc; ++i)
if (!sceof[i]) {
do_indent();
out_str("case YY_STATE_EOF(%s):\n", scname[i]);
did_eof_rule = true;
}
if (did_eof_rule) {
indent_up();
indent_puts("yyterminate();");
indent_down();
}
/* Generate code for handling NUL's, if needed. */
/*
* First, deal with backing up and setting up yy_cp if the scanner
* finds that it should JAM on the NUL.
*/
skelout(); /* %% [14.0] - break point in skel */
set_indent(4);
if (fullspd || fulltbl)
indent_puts("yy_cp = YY_G(yy_c_buf_p);");
else { /* compressed table */
if (!reject && !interactive) {
/*
* Do the guaranteed-needed backing up to figure out
* the match.
*/
indent_puts
("yy_cp = YY_G(yy_last_accepting_cpos);");
indent_puts
("yy_current_state = YY_G(yy_last_accepting_state);");
} else
/*
* Still need to initialize yy_cp, though
* yy_current_state was set up by
* yy_get_previous_state().
*/
indent_puts("yy_cp = YY_G(yy_c_buf_p);");
}
/* Generate code for yy_get_previous_state(). */
set_indent(1);
skelout(); /* %% [15.0] - break point in skel */
gen_start_state();
set_indent(2);
skelout(); /* %% [16.0] - break point in skel */
gen_next_state(true);
set_indent(1);
skelout(); /* %% [17.0] - break point in skel */
gen_NUL_trans();
skelout(); /* %% [18.0] - break point in skel */
skelout(); /* %% [19.0] - break point in skel */
/* Update BOL and yylineno inside of input(). */
if (bol_needed) {
indent_puts
("YY_CURRENT_BUFFER_LVALUE->yy_at_bol = (c == '\\n');");
if (do_yylineno) {
indent_puts
("if ( YY_CURRENT_BUFFER_LVALUE->yy_at_bol )");
indent_up();
indent_puts("M4_YY_INCR_LINENO();");
indent_down();
}
} else if (do_yylineno) {
indent_puts("if ( c == '\\n' )");
indent_up();
indent_puts("M4_YY_INCR_LINENO();");
indent_down();
}
skelout();
/* Copy remainder of input to output. */
line_directive_out(stdout, 1);
if (sectnum == 3) {
OUT_BEGIN_CODE();
(void) flexscan(); /* copy remainder of input to output */
OUT_END_CODE();
}
}