1106 lines
27 KiB
C
1106 lines
27 KiB
C
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
|
|
│vi: set et ft=c ts=8 sw=8 fenc=utf-8 :vi│
|
|
└─────────────────────────────────────────────────────────────────────────────*/
|
|
|
|
/* clang-format off */
|
|
/* $OpenBSD: dfa.c,v 1.8 2015/11/19 23:20:34 tedu Exp $ */
|
|
|
|
/* dfa - DFA construction routines */
|
|
|
|
/* Copyright (c) 1990 The Regents of the University of California. */
|
|
/* All rights reserved. */
|
|
|
|
/* This code is derived from software contributed to Berkeley by */
|
|
/* Vern Paxson. */
|
|
|
|
/* The United States Government has rights in this work pursuant */
|
|
/* to contract no. DE-AC03-76SF00098 between the United States */
|
|
/* Department of Energy and the University of California. */
|
|
|
|
/* Redistribution and use in source and binary forms, with or without */
|
|
/* modification, are permitted provided that the following conditions */
|
|
/* are met: */
|
|
|
|
/* 1. Redistributions of source code must retain the above copyright */
|
|
/* notice, this list of conditions and the following disclaimer. */
|
|
/* 2. Redistributions in binary form must reproduce the above copyright */
|
|
/* notice, this list of conditions and the following disclaimer in the */
|
|
/* documentation and/or other materials provided with the distribution. */
|
|
|
|
/* Neither the name of the University nor the names of its contributors */
|
|
/* may be used to endorse or promote products derived from this software */
|
|
/* without specific prior written permission. */
|
|
|
|
/* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
|
|
/* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
|
|
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
|
|
/* PURPOSE. */
|
|
|
|
#include "flexdef.h"
|
|
#include "libc/alg/alg.h"
|
|
#include "libc/mem/mem.h"
|
|
#include "tables.h"
|
|
|
|
/* declare functions that have forward references */
|
|
|
|
void dump_associated_rules PROTO ((FILE *, int));
|
|
void dump_transitions PROTO ((FILE *, int[]));
|
|
void sympartition PROTO ((int[], int, int[], int[]));
|
|
int symfollowset PROTO ((int[], int, int, int[]));
|
|
|
|
|
|
/* check_for_backing_up - check a DFA state for backing up
|
|
*
|
|
* synopsis
|
|
* void check_for_backing_up( int ds, int state[numecs] );
|
|
*
|
|
* ds is the number of the state to check and state[] is its out-transitions,
|
|
* indexed by equivalence class.
|
|
*/
|
|
|
|
void check_for_backing_up (ds, state)
|
|
int ds;
|
|
int state[];
|
|
{
|
|
if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */
|
|
++num_backing_up;
|
|
|
|
if (backing_up_report) {
|
|
fprintf (backing_up_file,
|
|
_("State #%d is non-accepting -\n"), ds);
|
|
|
|
/* identify the state */
|
|
dump_associated_rules (backing_up_file, ds);
|
|
|
|
/* Now identify it further using the out- and
|
|
* jam-transitions.
|
|
*/
|
|
dump_transitions (backing_up_file, state);
|
|
|
|
putc ('\n', backing_up_file);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* check_trailing_context - check to see if NFA state set constitutes
|
|
* "dangerous" trailing context
|
|
*
|
|
* synopsis
|
|
* void check_trailing_context( int nfa_states[num_states+1], int num_states,
|
|
* int accset[nacc+1], int nacc );
|
|
*
|
|
* NOTES
|
|
* Trailing context is "dangerous" if both the head and the trailing
|
|
* part are of variable size \and/ there's a DFA state which contains
|
|
* both an accepting state for the head part of the rule and NFA states
|
|
* which occur after the beginning of the trailing context.
|
|
*
|
|
* When such a rule is matched, it's impossible to tell if having been
|
|
* in the DFA state indicates the beginning of the trailing context or
|
|
* further-along scanning of the pattern. In these cases, a warning
|
|
* message is issued.
|
|
*
|
|
* nfa_states[1 .. num_states] is the list of NFA states in the DFA.
|
|
* accset[1 .. nacc] is the list of accepting numbers for the DFA state.
|
|
*/
|
|
|
|
void check_trailing_context (nfa_states, num_states, accset, nacc)
|
|
int *nfa_states, num_states;
|
|
int *accset;
|
|
int nacc;
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 1; i <= num_states; ++i) {
|
|
int ns = nfa_states[i];
|
|
int type = state_type[ns];
|
|
int ar = assoc_rule[ns];
|
|
|
|
if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) { /* do nothing */
|
|
}
|
|
|
|
else if (type == STATE_TRAILING_CONTEXT) {
|
|
/* Potential trouble. Scan set of accepting numbers
|
|
* for the one marking the end of the "head". We
|
|
* assume that this looping will be fairly cheap
|
|
* since it's rare that an accepting number set
|
|
* is large.
|
|
*/
|
|
for (j = 1; j <= nacc; ++j)
|
|
if (accset[j] & YY_TRAILING_HEAD_MASK) {
|
|
line_warning (_
|
|
("dangerous trailing context"),
|
|
rule_linenum[ar]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* dump_associated_rules - list the rules associated with a DFA state
|
|
*
|
|
* Goes through the set of NFA states associated with the DFA and
|
|
* extracts the first MAX_ASSOC_RULES unique rules, sorts them,
|
|
* and writes a report to the given file.
|
|
*/
|
|
|
|
void dump_associated_rules (file, ds)
|
|
FILE *file;
|
|
int ds;
|
|
{
|
|
int i, j;
|
|
int num_associated_rules = 0;
|
|
int rule_set[MAX_ASSOC_RULES + 1];
|
|
int *dset = dss[ds];
|
|
int size = dfasiz[ds];
|
|
|
|
for (i = 1; i <= size; ++i) {
|
|
int rule_num = rule_linenum[assoc_rule[dset[i]]];
|
|
|
|
for (j = 1; j <= num_associated_rules; ++j)
|
|
if (rule_num == rule_set[j])
|
|
break;
|
|
|
|
if (j > num_associated_rules) { /* new rule */
|
|
if (num_associated_rules < MAX_ASSOC_RULES)
|
|
rule_set[++num_associated_rules] =
|
|
rule_num;
|
|
}
|
|
}
|
|
|
|
qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp);
|
|
|
|
fprintf (file, _(" associated rule line numbers:"));
|
|
|
|
for (i = 1; i <= num_associated_rules; ++i) {
|
|
if (i % 8 == 1)
|
|
putc ('\n', file);
|
|
|
|
fprintf (file, "\t%d", rule_set[i]);
|
|
}
|
|
|
|
putc ('\n', file);
|
|
}
|
|
|
|
|
|
/* dump_transitions - list the transitions associated with a DFA state
|
|
*
|
|
* synopsis
|
|
* dump_transitions( FILE *file, int state[numecs] );
|
|
*
|
|
* Goes through the set of out-transitions and lists them in human-readable
|
|
* form (i.e., not as equivalence classes); also lists jam transitions
|
|
* (i.e., all those which are not out-transitions, plus EOF). The dump
|
|
* is done to the given file.
|
|
*/
|
|
|
|
void dump_transitions (file, state)
|
|
FILE *file;
|
|
int state[];
|
|
{
|
|
int i, ec;
|
|
int out_char_set[CSIZE];
|
|
|
|
for (i = 0; i < csize; ++i) {
|
|
ec = ABS (ecgroup[i]);
|
|
out_char_set[i] = state[ec];
|
|
}
|
|
|
|
fprintf (file, _(" out-transitions: "));
|
|
|
|
list_character_set (file, out_char_set);
|
|
|
|
/* now invert the members of the set to get the jam transitions */
|
|
for (i = 0; i < csize; ++i)
|
|
out_char_set[i] = !out_char_set[i];
|
|
|
|
fprintf (file, _("\n jam-transitions: EOF "));
|
|
|
|
list_character_set (file, out_char_set);
|
|
|
|
putc ('\n', file);
|
|
}
|
|
|
|
|
|
/* epsclosure - construct the epsilon closure of a set of ndfa states
|
|
*
|
|
* synopsis
|
|
* int *epsclosure( int t[num_states], int *numstates_addr,
|
|
* int accset[num_rules+1], int *nacc_addr,
|
|
* int *hashval_addr );
|
|
*
|
|
* NOTES
|
|
* The epsilon closure is the set of all states reachable by an arbitrary
|
|
* number of epsilon transitions, which themselves do not have epsilon
|
|
* transitions going out, unioned with the set of states which have non-null
|
|
* accepting numbers. t is an array of size numstates of nfa state numbers.
|
|
* Upon return, t holds the epsilon closure and *numstates_addr is updated.
|
|
* accset holds a list of the accepting numbers, and the size of accset is
|
|
* given by *nacc_addr. t may be subjected to reallocation if it is not
|
|
* large enough to hold the epsilon closure.
|
|
*
|
|
* hashval is the hash value for the dfa corresponding to the state set.
|
|
*/
|
|
|
|
int *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
|
|
int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
|
|
{
|
|
int stkpos, ns, tsp;
|
|
int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
|
|
int stkend, nstate;
|
|
static int did_stk_init = false, *stk;
|
|
|
|
#define MARK_STATE(state) \
|
|
do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
|
|
|
|
#define IS_MARKED(state) (trans1[state] < 0)
|
|
|
|
#define UNMARK_STATE(state) \
|
|
do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
|
|
|
|
#define CHECK_ACCEPT(state) \
|
|
do{ \
|
|
nfaccnum = accptnum[state]; \
|
|
if ( nfaccnum != NIL ) \
|
|
accset[++nacc] = nfaccnum; \
|
|
}while(0)
|
|
|
|
#define DO_REALLOCATION() \
|
|
do { \
|
|
current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
|
|
++num_reallocs; \
|
|
t = reallocate_integer_array( t, current_max_dfa_size ); \
|
|
stk = reallocate_integer_array( stk, current_max_dfa_size ); \
|
|
}while(0) \
|
|
|
|
#define PUT_ON_STACK(state) \
|
|
do { \
|
|
if ( ++stkend >= current_max_dfa_size ) \
|
|
DO_REALLOCATION(); \
|
|
stk[stkend] = state; \
|
|
MARK_STATE(state); \
|
|
}while(0)
|
|
|
|
#define ADD_STATE(state) \
|
|
do { \
|
|
if ( ++numstates >= current_max_dfa_size ) \
|
|
DO_REALLOCATION(); \
|
|
t[numstates] = state; \
|
|
hashval += state; \
|
|
}while(0)
|
|
|
|
#define STACK_STATE(state) \
|
|
do { \
|
|
PUT_ON_STACK(state); \
|
|
CHECK_ACCEPT(state); \
|
|
if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
|
|
ADD_STATE(state); \
|
|
}while(0)
|
|
|
|
|
|
if (!did_stk_init) {
|
|
stk = allocate_integer_array (current_max_dfa_size);
|
|
did_stk_init = true;
|
|
}
|
|
|
|
nacc = stkend = hashval = 0;
|
|
|
|
for (nstate = 1; nstate <= numstates; ++nstate) {
|
|
ns = t[nstate];
|
|
|
|
/* The state could be marked if we've already pushed it onto
|
|
* the stack.
|
|
*/
|
|
if (!IS_MARKED (ns)) {
|
|
PUT_ON_STACK (ns);
|
|
CHECK_ACCEPT (ns);
|
|
hashval += ns;
|
|
}
|
|
}
|
|
|
|
for (stkpos = 1; stkpos <= stkend; ++stkpos) {
|
|
ns = stk[stkpos];
|
|
transsym = transchar[ns];
|
|
|
|
if (transsym == SYM_EPSILON) {
|
|
tsp = trans1[ns] + MARKER_DIFFERENCE;
|
|
|
|
if (tsp != NO_TRANSITION) {
|
|
if (!IS_MARKED (tsp))
|
|
STACK_STATE (tsp);
|
|
|
|
tsp = trans2[ns];
|
|
|
|
if (tsp != NO_TRANSITION
|
|
&& !IS_MARKED (tsp))
|
|
STACK_STATE (tsp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clear out "visit" markers. */
|
|
|
|
for (stkpos = 1; stkpos <= stkend; ++stkpos) {
|
|
if (IS_MARKED (stk[stkpos]))
|
|
UNMARK_STATE (stk[stkpos]);
|
|
else
|
|
flexfatal (_
|
|
("consistency check failed in epsclosure()"));
|
|
}
|
|
|
|
*ns_addr = numstates;
|
|
*hv_addr = hashval;
|
|
*nacc_addr = nacc;
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
/* increase_max_dfas - increase the maximum number of DFAs */
|
|
|
|
void increase_max_dfas ()
|
|
{
|
|
current_max_dfas += MAX_DFAS_INCREMENT;
|
|
|
|
++num_reallocs;
|
|
|
|
base = reallocate_integer_array (base, current_max_dfas);
|
|
def = reallocate_integer_array (def, current_max_dfas);
|
|
dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
|
|
accsiz = reallocate_integer_array (accsiz, current_max_dfas);
|
|
dhash = reallocate_integer_array (dhash, current_max_dfas);
|
|
dss = reallocate_int_ptr_array (dss, current_max_dfas);
|
|
dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
|
|
|
|
if (nultrans)
|
|
nultrans =
|
|
reallocate_integer_array (nultrans,
|
|
current_max_dfas);
|
|
}
|
|
|
|
|
|
/* ntod - convert an ndfa to a dfa
|
|
*
|
|
* Creates the dfa corresponding to the ndfa we've constructed. The
|
|
* dfa starts out in state #1.
|
|
*/
|
|
|
|
void ntod ()
|
|
{
|
|
int *accset, ds, nacc, newds;
|
|
int sym, hashval, numstates, dsize;
|
|
int num_full_table_rows=0; /* used only for -f */
|
|
int *nset, *dset;
|
|
int targptr, totaltrans, i, comstate, comfreq, targ;
|
|
int symlist[CSIZE + 1];
|
|
int num_start_states;
|
|
int todo_head, todo_next;
|
|
|
|
struct yytbl_data *yynxt_tbl = 0;
|
|
flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
|
|
|
|
/* Note that the following are indexed by *equivalence classes*
|
|
* and not by characters. Since equivalence classes are indexed
|
|
* beginning with 1, even if the scanner accepts NUL's, this
|
|
* means that (since every character is potentially in its own
|
|
* equivalence class) these arrays must have room for indices
|
|
* from 1 to CSIZE, so their size must be CSIZE + 1.
|
|
*/
|
|
int duplist[CSIZE + 1], state[CSIZE + 1];
|
|
int targfreq[CSIZE + 1], targstate[CSIZE + 1];
|
|
|
|
/* accset needs to be large enough to hold all of the rules present
|
|
* in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
|
|
*/
|
|
accset = allocate_integer_array ((num_rules + 1) * 2);
|
|
nset = allocate_integer_array (current_max_dfa_size);
|
|
|
|
/* The "todo" queue is represented by the head, which is the DFA
|
|
* state currently being processed, and the "next", which is the
|
|
* next DFA state number available (not in use). We depend on the
|
|
* fact that snstods() returns DFA's \in increasing order/, and thus
|
|
* need only know the bounds of the dfas to be processed.
|
|
*/
|
|
todo_head = todo_next = 0;
|
|
|
|
for (i = 0; i <= csize; ++i) {
|
|
duplist[i] = NIL;
|
|
symlist[i] = false;
|
|
}
|
|
|
|
for (i = 0; i <= num_rules; ++i)
|
|
accset[i] = NIL;
|
|
|
|
if (trace) {
|
|
dumpnfa (scset[1]);
|
|
fputs (_("\n\nDFA Dump:\n\n"), stderr);
|
|
}
|
|
|
|
inittbl ();
|
|
|
|
/* Check to see whether we should build a separate table for
|
|
* transitions on NUL characters. We don't do this for full-speed
|
|
* (-F) scanners, since for them we don't have a simple state
|
|
* number lying around with which to index the table. We also
|
|
* don't bother doing it for scanners unless (1) NUL is in its own
|
|
* equivalence class (indicated by a positive value of
|
|
* ecgroup[NUL]), (2) NUL's equivalence class is the last
|
|
* equivalence class, and (3) the number of equivalence classes is
|
|
* the same as the number of characters. This latter case comes
|
|
* about when useecs is false or when it's true but every character
|
|
* still manages to land in its own class (unlikely, but it's
|
|
* cheap to check for). If all these things are true then the
|
|
* character code needed to represent NUL's equivalence class for
|
|
* indexing the tables is going to take one more bit than the
|
|
* number of characters, and therefore we won't be assured of
|
|
* being able to fit it into a YY_CHAR variable. This rules out
|
|
* storing the transitions in a compressed table, since the code
|
|
* for interpreting them uses a YY_CHAR variable (perhaps it
|
|
* should just use an integer, though; this is worth pondering ...
|
|
* ###).
|
|
*
|
|
* Finally, for full tables, we want the number of entries in the
|
|
* table to be a power of two so the array references go fast (it
|
|
* will just take a shift to compute the major index). If
|
|
* encoding NUL's transitions in the table will spoil this, we
|
|
* give it its own table (note that this will be the case if we're
|
|
* not using equivalence classes).
|
|
*/
|
|
|
|
/* Note that the test for ecgroup[0] == numecs below accomplishes
|
|
* both (1) and (2) above
|
|
*/
|
|
if (!fullspd && ecgroup[0] == numecs) {
|
|
/* NUL is alone in its equivalence class, which is the
|
|
* last one.
|
|
*/
|
|
int use_NUL_table = (numecs == csize);
|
|
|
|
if (fulltbl && !use_NUL_table) {
|
|
/* We still may want to use the table if numecs
|
|
* is a power of 2.
|
|
*/
|
|
int power_of_two;
|
|
|
|
for (power_of_two = 1; power_of_two <= csize;
|
|
power_of_two *= 2)
|
|
if (numecs == power_of_two) {
|
|
use_NUL_table = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (use_NUL_table)
|
|
nultrans =
|
|
allocate_integer_array (current_max_dfas);
|
|
|
|
/* From now on, nultrans != nil indicates that we're
|
|
* saving null transitions for later, separate encoding.
|
|
*/
|
|
}
|
|
|
|
|
|
if (fullspd) {
|
|
for (i = 0; i <= numecs; ++i)
|
|
state[i] = 0;
|
|
|
|
place_state (state, 0, 0);
|
|
dfaacc[0].dfaacc_state = 0;
|
|
}
|
|
|
|
else if (fulltbl) {
|
|
if (nultrans)
|
|
/* We won't be including NUL's transitions in the
|
|
* table, so build it for entries from 0 .. numecs - 1.
|
|
*/
|
|
num_full_table_rows = numecs;
|
|
|
|
else
|
|
/* Take into account the fact that we'll be including
|
|
* the NUL entries in the transition table. Build it
|
|
* from 0 .. numecs.
|
|
*/
|
|
num_full_table_rows = numecs + 1;
|
|
|
|
/* Begin generating yy_nxt[][]
|
|
* This spans the entire LONG function.
|
|
* This table is tricky because we don't know how big it will be.
|
|
* So we'll have to realloc() on the way...
|
|
* we'll wait until we can calculate yynxt_tbl->td_hilen.
|
|
*/
|
|
yynxt_tbl =
|
|
(struct yytbl_data *) calloc (1,
|
|
sizeof (struct
|
|
yytbl_data));
|
|
yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
|
|
yynxt_tbl->td_hilen = 1;
|
|
yynxt_tbl->td_lolen = num_full_table_rows;
|
|
yynxt_tbl->td_data = yynxt_data =
|
|
(flex_int32_t *) calloc (yynxt_tbl->td_lolen *
|
|
yynxt_tbl->td_hilen,
|
|
sizeof (flex_int32_t));
|
|
yynxt_curr = 0;
|
|
|
|
buf_prints (&yydmap_buf,
|
|
"\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
|
|
long_align ? "flex_int32_t" : "flex_int16_t");
|
|
|
|
/* Unless -Ca, declare it "short" because it's a real
|
|
* long-shot that that won't be large enough.
|
|
*/
|
|
if (gentables)
|
|
out_str_dec
|
|
("static yyconst %s yy_nxt[][%d] =\n {\n",
|
|
long_align ? "flex_int32_t" : "flex_int16_t",
|
|
num_full_table_rows);
|
|
else {
|
|
out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
|
|
out_str ("static yyconst %s *yy_nxt =0;\n",
|
|
long_align ? "flex_int32_t" : "flex_int16_t");
|
|
}
|
|
|
|
|
|
if (gentables)
|
|
outn (" {");
|
|
|
|
/* Generate 0 entries for state #0. */
|
|
for (i = 0; i < num_full_table_rows; ++i) {
|
|
mk2data (0);
|
|
yynxt_data[yynxt_curr++] = 0;
|
|
}
|
|
|
|
dataflush ();
|
|
if (gentables)
|
|
outn (" },\n");
|
|
}
|
|
|
|
/* Create the first states. */
|
|
|
|
num_start_states = lastsc * 2;
|
|
|
|
for (i = 1; i <= num_start_states; ++i) {
|
|
numstates = 1;
|
|
|
|
/* For each start condition, make one state for the case when
|
|
* we're at the beginning of the line (the '^' operator) and
|
|
* one for the case when we're not.
|
|
*/
|
|
if (i % 2 == 1)
|
|
nset[numstates] = scset[(i / 2) + 1];
|
|
else
|
|
nset[numstates] =
|
|
mkbranch (scbol[i / 2], scset[i / 2]);
|
|
|
|
nset = epsclosure (nset, &numstates, accset, &nacc,
|
|
&hashval);
|
|
|
|
if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
|
|
numas += nacc;
|
|
totnst += numstates;
|
|
++todo_next;
|
|
|
|
if (variable_trailing_context_rules && nacc > 0)
|
|
check_trailing_context (nset, numstates,
|
|
accset, nacc);
|
|
}
|
|
}
|
|
|
|
if (!fullspd) {
|
|
if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
|
|
flexfatal (_
|
|
("could not create unique end-of-buffer state"));
|
|
|
|
++numas;
|
|
++num_start_states;
|
|
++todo_next;
|
|
}
|
|
|
|
|
|
while (todo_head < todo_next) {
|
|
targptr = 0;
|
|
totaltrans = 0;
|
|
|
|
for (i = 1; i <= numecs; ++i)
|
|
state[i] = 0;
|
|
|
|
ds = ++todo_head;
|
|
|
|
dset = dss[ds];
|
|
dsize = dfasiz[ds];
|
|
|
|
if (trace)
|
|
fprintf (stderr, _("state # %d:\n"), ds);
|
|
|
|
sympartition (dset, dsize, symlist, duplist);
|
|
|
|
for (sym = 1; sym <= numecs; ++sym) {
|
|
if (symlist[sym]) {
|
|
symlist[sym] = 0;
|
|
|
|
if (duplist[sym] == NIL) {
|
|
/* Symbol has unique out-transitions. */
|
|
numstates =
|
|
symfollowset (dset, dsize,
|
|
sym, nset);
|
|
nset = epsclosure (nset,
|
|
&numstates,
|
|
accset, &nacc,
|
|
&hashval);
|
|
|
|
if (snstods
|
|
(nset, numstates, accset, nacc,
|
|
hashval, &newds)) {
|
|
totnst = totnst +
|
|
numstates;
|
|
++todo_next;
|
|
numas += nacc;
|
|
|
|
if (variable_trailing_context_rules && nacc > 0)
|
|
check_trailing_context
|
|
(nset,
|
|
numstates,
|
|
accset,
|
|
nacc);
|
|
}
|
|
|
|
state[sym] = newds;
|
|
|
|
if (trace)
|
|
fprintf (stderr,
|
|
"\t%d\t%d\n", sym,
|
|
newds);
|
|
|
|
targfreq[++targptr] = 1;
|
|
targstate[targptr] = newds;
|
|
++numuniq;
|
|
}
|
|
|
|
else {
|
|
/* sym's equivalence class has the same
|
|
* transitions as duplist(sym)'s
|
|
* equivalence class.
|
|
*/
|
|
targ = state[duplist[sym]];
|
|
state[sym] = targ;
|
|
|
|
if (trace)
|
|
fprintf (stderr,
|
|
"\t%d\t%d\n", sym,
|
|
targ);
|
|
|
|
/* Update frequency count for
|
|
* destination state.
|
|
*/
|
|
|
|
i = 0;
|
|
while (targstate[++i] != targ) ;
|
|
|
|
++targfreq[i];
|
|
++numdup;
|
|
}
|
|
|
|
++totaltrans;
|
|
duplist[sym] = NIL;
|
|
}
|
|
}
|
|
|
|
|
|
numsnpairs += totaltrans;
|
|
|
|
if (ds > num_start_states)
|
|
check_for_backing_up (ds, state);
|
|
|
|
if (nultrans) {
|
|
nultrans[ds] = state[NUL_ec];
|
|
state[NUL_ec] = 0; /* remove transition */
|
|
}
|
|
|
|
if (fulltbl) {
|
|
|
|
/* Each time we hit here, it's another td_hilen, so we realloc. */
|
|
yynxt_tbl->td_hilen++;
|
|
yynxt_tbl->td_data = yynxt_data =
|
|
(flex_int32_t *) realloc (yynxt_data,
|
|
yynxt_tbl->td_hilen *
|
|
yynxt_tbl->td_lolen *
|
|
sizeof (flex_int32_t));
|
|
|
|
|
|
if (gentables)
|
|
outn (" {");
|
|
|
|
/* Supply array's 0-element. */
|
|
if (ds == end_of_buffer_state) {
|
|
mk2data (-end_of_buffer_state);
|
|
yynxt_data[yynxt_curr++] =
|
|
-end_of_buffer_state;
|
|
}
|
|
else {
|
|
mk2data (end_of_buffer_state);
|
|
yynxt_data[yynxt_curr++] =
|
|
end_of_buffer_state;
|
|
}
|
|
|
|
for (i = 1; i < num_full_table_rows; ++i) {
|
|
/* Jams are marked by negative of state
|
|
* number.
|
|
*/
|
|
mk2data (state[i] ? state[i] : -ds);
|
|
yynxt_data[yynxt_curr++] =
|
|
state[i] ? state[i] : -ds;
|
|
}
|
|
|
|
dataflush ();
|
|
if (gentables)
|
|
outn (" },\n");
|
|
}
|
|
|
|
else if (fullspd)
|
|
place_state (state, ds, totaltrans);
|
|
|
|
else if (ds == end_of_buffer_state)
|
|
/* Special case this state to make sure it does what
|
|
* it's supposed to, i.e., jam on end-of-buffer.
|
|
*/
|
|
stack1 (ds, 0, 0, JAMSTATE);
|
|
|
|
else { /* normal, compressed state */
|
|
|
|
/* Determine which destination state is the most
|
|
* common, and how many transitions to it there are.
|
|
*/
|
|
|
|
comfreq = 0;
|
|
comstate = 0;
|
|
|
|
for (i = 1; i <= targptr; ++i)
|
|
if (targfreq[i] > comfreq) {
|
|
comfreq = targfreq[i];
|
|
comstate = targstate[i];
|
|
}
|
|
|
|
bldtbl (state, ds, totaltrans, comstate, comfreq);
|
|
}
|
|
}
|
|
|
|
if (fulltbl) {
|
|
dataend ();
|
|
if (tablesext) {
|
|
yytbl_data_compress (yynxt_tbl);
|
|
if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
|
|
flexerror (_
|
|
("Could not write yynxt_tbl[][]"));
|
|
}
|
|
if (yynxt_tbl) {
|
|
yytbl_data_destroy (yynxt_tbl);
|
|
yynxt_tbl = 0;
|
|
}
|
|
}
|
|
|
|
else if (!fullspd) {
|
|
cmptmps (); /* create compressed template entries */
|
|
|
|
/* Create tables for all the states with only one
|
|
* out-transition.
|
|
*/
|
|
while (onesp > 0) {
|
|
mk1tbl (onestate[onesp], onesym[onesp],
|
|
onenext[onesp], onedef[onesp]);
|
|
--onesp;
|
|
}
|
|
|
|
mkdeftbl ();
|
|
}
|
|
|
|
free ((void *) accset);
|
|
free ((void *) nset);
|
|
}
|
|
|
|
|
|
/* snstods - converts a set of ndfa states into a dfa state
|
|
*
|
|
* synopsis
|
|
* is_new_state = snstods( int sns[numstates], int numstates,
|
|
* int accset[num_rules+1], int nacc,
|
|
* int hashval, int *newds_addr );
|
|
*
|
|
* On return, the dfa state number is in newds.
|
|
*/
|
|
|
|
int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
|
|
int sns[], numstates, accset[], nacc, hashval, *newds_addr;
|
|
{
|
|
int didsort = 0;
|
|
int i, j;
|
|
int newds, *oldsns;
|
|
|
|
for (i = 1; i <= lastdfa; ++i)
|
|
if (hashval == dhash[i]) {
|
|
if (numstates == dfasiz[i]) {
|
|
oldsns = dss[i];
|
|
|
|
if (!didsort) {
|
|
/* We sort the states in sns so we
|
|
* can compare it to oldsns quickly.
|
|
*/
|
|
qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
|
|
didsort = 1;
|
|
}
|
|
|
|
for (j = 1; j <= numstates; ++j)
|
|
if (sns[j] != oldsns[j])
|
|
break;
|
|
|
|
if (j > numstates) {
|
|
++dfaeql;
|
|
*newds_addr = i;
|
|
return 0;
|
|
}
|
|
|
|
++hshcol;
|
|
}
|
|
|
|
else
|
|
++hshsave;
|
|
}
|
|
|
|
/* Make a new dfa. */
|
|
|
|
if (++lastdfa >= current_max_dfas)
|
|
increase_max_dfas ();
|
|
|
|
newds = lastdfa;
|
|
|
|
dss[newds] = allocate_integer_array (numstates + 1);
|
|
|
|
/* If we haven't already sorted the states in sns, we do so now,
|
|
* so that future comparisons with it can be made quickly.
|
|
*/
|
|
|
|
if (!didsort)
|
|
qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
|
|
|
|
for (i = 1; i <= numstates; ++i)
|
|
dss[newds][i] = sns[i];
|
|
|
|
dfasiz[newds] = numstates;
|
|
dhash[newds] = hashval;
|
|
|
|
if (nacc == 0) {
|
|
if (reject)
|
|
dfaacc[newds].dfaacc_set = (int *) 0;
|
|
else
|
|
dfaacc[newds].dfaacc_state = 0;
|
|
|
|
accsiz[newds] = 0;
|
|
}
|
|
|
|
else if (reject) {
|
|
/* We sort the accepting set in increasing order so the
|
|
* disambiguating rule that the first rule listed is considered
|
|
* match in the event of ties will work.
|
|
*/
|
|
|
|
qsort (&accset [1], nacc, sizeof (accset [1]), intcmp);
|
|
|
|
dfaacc[newds].dfaacc_set =
|
|
allocate_integer_array (nacc + 1);
|
|
|
|
/* Save the accepting set for later */
|
|
for (i = 1; i <= nacc; ++i) {
|
|
dfaacc[newds].dfaacc_set[i] = accset[i];
|
|
|
|
if (accset[i] <= num_rules)
|
|
/* Who knows, perhaps a REJECT can yield
|
|
* this rule.
|
|
*/
|
|
rule_useful[accset[i]] = true;
|
|
}
|
|
|
|
accsiz[newds] = nacc;
|
|
}
|
|
|
|
else {
|
|
/* Find lowest numbered rule so the disambiguating rule
|
|
* will work.
|
|
*/
|
|
j = num_rules + 1;
|
|
|
|
for (i = 1; i <= nacc; ++i)
|
|
if (accset[i] < j)
|
|
j = accset[i];
|
|
|
|
dfaacc[newds].dfaacc_state = j;
|
|
|
|
if (j <= num_rules)
|
|
rule_useful[j] = true;
|
|
}
|
|
|
|
*newds_addr = newds;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* symfollowset - follow the symbol transitions one step
|
|
*
|
|
* synopsis
|
|
* numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
|
|
* int transsym, int nset[current_max_dfa_size] );
|
|
*/
|
|
|
|
int symfollowset (ds, dsize, transsym, nset)
|
|
int ds[], dsize, transsym, nset[];
|
|
{
|
|
int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
|
|
|
|
numstates = 0;
|
|
|
|
for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */
|
|
ns = ds[i];
|
|
sym = transchar[ns];
|
|
tsp = trans1[ns];
|
|
|
|
if (sym < 0) { /* it's a character class */
|
|
sym = -sym;
|
|
ccllist = cclmap[sym];
|
|
lenccl = ccllen[sym];
|
|
|
|
if (cclng[sym]) {
|
|
for (j = 0; j < lenccl; ++j) {
|
|
/* Loop through negated character
|
|
* class.
|
|
*/
|
|
ch = ccltbl[ccllist + j];
|
|
|
|
if (ch == 0)
|
|
ch = NUL_ec;
|
|
|
|
if (ch > transsym)
|
|
/* Transsym isn't in negated
|
|
* ccl.
|
|
*/
|
|
break;
|
|
|
|
else if (ch == transsym)
|
|
/* next 2 */
|
|
goto bottom;
|
|
}
|
|
|
|
/* Didn't find transsym in ccl. */
|
|
nset[++numstates] = tsp;
|
|
}
|
|
|
|
else
|
|
for (j = 0; j < lenccl; ++j) {
|
|
ch = ccltbl[ccllist + j];
|
|
|
|
if (ch == 0)
|
|
ch = NUL_ec;
|
|
|
|
if (ch > transsym)
|
|
break;
|
|
else if (ch == transsym) {
|
|
nset[++numstates] = tsp;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
else if (sym == SYM_EPSILON) { /* do nothing */
|
|
}
|
|
|
|
else if (ABS (ecgroup[sym]) == transsym)
|
|
nset[++numstates] = tsp;
|
|
|
|
bottom:;
|
|
}
|
|
|
|
return numstates;
|
|
}
|
|
|
|
|
|
/* sympartition - partition characters with same out-transitions
|
|
*
|
|
* synopsis
|
|
* sympartition( int ds[current_max_dfa_size], int numstates,
|
|
* int symlist[numecs], int duplist[numecs] );
|
|
*/
|
|
|
|
void sympartition (ds, numstates, symlist, duplist)
|
|
int ds[], numstates;
|
|
int symlist[], duplist[];
|
|
{
|
|
int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
|
|
|
|
/* Partitioning is done by creating equivalence classes for those
|
|
* characters which have out-transitions from the given state. Thus
|
|
* we are really creating equivalence classes of equivalence classes.
|
|
*/
|
|
|
|
for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */
|
|
duplist[i] = i - 1;
|
|
dupfwd[i] = i + 1;
|
|
}
|
|
|
|
duplist[1] = NIL;
|
|
dupfwd[numecs] = NIL;
|
|
|
|
for (i = 1; i <= numstates; ++i) {
|
|
ns = ds[i];
|
|
tch = transchar[ns];
|
|
|
|
if (tch != SYM_EPSILON) {
|
|
if (tch < -lastccl || tch >= csize) {
|
|
flexfatal (_
|
|
("bad transition character detected in sympartition()"));
|
|
}
|
|
|
|
if (tch >= 0) { /* character transition */
|
|
int ec = ecgroup[tch];
|
|
|
|
mkechar (ec, dupfwd, duplist);
|
|
symlist[ec] = 1;
|
|
}
|
|
|
|
else { /* character class */
|
|
tch = -tch;
|
|
|
|
lenccl = ccllen[tch];
|
|
cclp = cclmap[tch];
|
|
mkeccl (ccltbl + cclp, lenccl, dupfwd,
|
|
duplist, numecs, NUL_ec);
|
|
|
|
if (cclng[tch]) {
|
|
j = 0;
|
|
|
|
for (k = 0; k < lenccl; ++k) {
|
|
ich = ccltbl[cclp + k];
|
|
|
|
if (ich == 0)
|
|
ich = NUL_ec;
|
|
|
|
for (++j; j < ich; ++j)
|
|
symlist[j] = 1;
|
|
}
|
|
|
|
for (++j; j <= numecs; ++j)
|
|
symlist[j] = 1;
|
|
}
|
|
|
|
else
|
|
for (k = 0; k < lenccl; ++k) {
|
|
ich = ccltbl[cclp + k];
|
|
|
|
if (ich == 0)
|
|
ich = NUL_ec;
|
|
|
|
symlist[ich] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|