cosmopolitan/third_party/lemon/lemon.c

5969 lines
182 KiB
C

#if 0
/*─────────────────────────────────────────────────────────────────╗
│ To the extent possible under law, Justine Tunney has waived │
│ all copyright and related or neighboring rights to this file, │
│ as it is written in the following disclaimers: │
│ • http://unlicense.org/ │
│ • http://creativecommons.org/publicdomain/zero/1.0/ │
╚─────────────────────────────────────────────────────────────────*/
#endif
#include "libc/alg/alg.h"
#include "libc/assert.h"
#include "libc/calls/calls.h"
#include "libc/conv/conv.h"
#include "libc/fmt/fmt.h"
#include "libc/mem/mem.h"
#include "libc/runtime/gc.h"
#include "libc/runtime/runtime.h"
#include "libc/stdio/stdio.h"
#include "libc/str/str.h"
#include "libc/x/x.h"
#include "third_party/dtoa/dtoa.h"
/*
** This file contains all sources (including headers) to the LEMON
** LALR(1) parser generator. The sources have been combined into a
** single file to make it easy to include LEMON in the source tree
** and Makefile of another program.
**
** The author of this program disclaims copyright.
*/
#define ISSPACE(X) isspace((unsigned char)(X))
#define ISDIGIT(X) isdigit((unsigned char)(X))
#define ISALNUM(X) isalnum((unsigned char)(X))
#define ISALPHA(X) isalpha((unsigned char)(X))
#define ISUPPER(X) isupper((unsigned char)(X))
#define ISLOWER(X) islower((unsigned char)(X))
#define PRIVATE static
/* #define PRIVATE */
#ifdef TEST
#define MAXRHS 5 /* Set low to exercise exception code */
#else
#define MAXRHS 1000
#endif
extern void memory_error();
static int showPrecedenceConflict = 0;
static char *msort(char *, char **, int (*)(const char *, const char *));
/*
** Compilers are getting increasingly pedantic about type conversions
** as C evolves ever closer to Ada.... To work around the latest problems
** we have to define the following variant of strlen().
*/
#define lemonStrlen(X) ((int)strlen(X))
/*
** Compilers are starting to complain about the use of sprintf() and strcpy(),
** saying they are unsafe. So we define our own versions of those routines too.
**
** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
** The third is a helper routine for vsnprintf() that adds texts to the end of a
** buffer, making sure the buffer is always zero-terminated.
**
** The string formatter is a minimal subset of stdlib sprintf() supporting only
** a few simply conversions:
**
** %d
** %s
** %.*s
**
*/
static void lemon_addtext(
char *zBuf, /* The buffer to which text is added */
int *pnUsed, /* Slots of the buffer used so far */
const char *zIn, /* Text to add */
int nIn, /* Bytes of text to add. -1 to use strlen() */
int iWidth /* Field width. Negative to left justify */
) {
if (nIn < 0)
for (nIn = 0; zIn[nIn]; nIn++) {
}
while (iWidth > nIn) {
zBuf[(*pnUsed)++] = ' ';
iWidth--;
}
if (nIn == 0) return;
memcpy(&zBuf[*pnUsed], zIn, nIn);
*pnUsed += nIn;
while ((-iWidth) > nIn) {
zBuf[(*pnUsed)++] = ' ';
iWidth++;
}
zBuf[*pnUsed] = 0;
}
static int lemon_vsprintf(char *str, const char *zFormat, va_list ap) {
int i, j, k, c;
int nUsed = 0;
const char *z;
char zTemp[50];
str[0] = 0;
for (i = j = 0; (c = zFormat[i]) != 0; i++) {
if (c == '%') {
int iWidth = 0;
lemon_addtext(str, &nUsed, &zFormat[j], i - j, 0);
c = zFormat[++i];
if (ISDIGIT(c) || (c == '-' && ISDIGIT(zFormat[i + 1]))) {
if (c == '-') i++;
while (ISDIGIT(zFormat[i])) iWidth = iWidth * 10 + zFormat[i++] - '0';
if (c == '-') iWidth = -iWidth;
c = zFormat[i];
}
if (c == 'd') {
int v = va_arg(ap, int);
if (v < 0) {
lemon_addtext(str, &nUsed, "-", 1, iWidth);
v = -v;
} else if (v == 0) {
lemon_addtext(str, &nUsed, "0", 1, iWidth);
}
k = 0;
while (v > 0) {
k++;
zTemp[sizeof(zTemp) - k] = (v % 10) + '0';
v /= 10;
}
lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp) - k], k, iWidth);
} else if (c == 's') {
z = va_arg(ap, const char *);
lemon_addtext(str, &nUsed, z, -1, iWidth);
} else if (c == '.' && memcmp(&zFormat[i], ".*s", 3) == 0) {
i += 2;
k = va_arg(ap, int);
z = va_arg(ap, const char *);
lemon_addtext(str, &nUsed, z, k, iWidth);
} else if (c == '%') {
lemon_addtext(str, &nUsed, "%", 1, 0);
} else {
fprintf(stderr, "illegal format\n");
exit(1);
}
j = i + 1;
}
}
lemon_addtext(str, &nUsed, &zFormat[j], i - j, 0);
return nUsed;
}
static int lemon_sprintf(char *str, const char *format, ...) {
va_list ap;
int rc;
va_start(ap, format);
rc = lemon_vsprintf(str, format, ap);
va_end(ap);
return rc;
}
static void lemon_strcpy(char *dest, const char *src) {
while ((*(dest++) = *(src++)) != 0) {
}
}
static void lemon_strcat(char *dest, const char *src) {
while (*dest) dest++;
lemon_strcpy(dest, src);
}
/* a few forward declarations... */
struct rule;
struct lemon;
struct action;
static struct action *Action_new(void);
static struct action *Action_sort(struct action *);
/********** From the file "build.h" ************************************/
void FindRulePrecedences(struct lemon *);
void FindFirstSets(struct lemon *);
void FindStates(struct lemon *);
void FindLinks(struct lemon *);
void FindFollowSets(struct lemon *);
void FindActions(struct lemon *);
/********* From the file "configlist.h" *********************************/
void Configlist_init(void);
struct config *Configlist_add(struct rule *, int);
struct config *Configlist_addbasis(struct rule *, int);
void Configlist_closure(struct lemon *);
void Configlist_sort(void);
void Configlist_sortbasis(void);
struct config *Configlist_return(void);
struct config *Configlist_basis(void);
void Configlist_eat(struct config *);
void Configlist_reset(void);
/********* From the file "error.h" ***************************************/
void ErrorMsg(const char *, int, const char *, ...);
/****** From the file "option.h" ******************************************/
enum option_type {
OPT_FLAG = 1,
OPT_INT,
OPT_DBL,
OPT_STR,
OPT_FFLAG,
OPT_FINT,
OPT_FDBL,
OPT_FSTR
};
struct s_options {
enum option_type type;
const char *label;
char *arg;
const char *message;
};
int OptInit(char **, struct s_options *, FILE *);
int OptNArgs(void);
char *OptArg(int);
void OptErr(int);
void OptPrint(void);
/******** From the file "parse.h" *****************************************/
void Parse(struct lemon *lemp);
/********* From the file "plink.h" ***************************************/
struct plink *Plink_new(void);
void Plink_add(struct plink **, struct config *);
void Plink_copy(struct plink **, struct plink *);
void Plink_delete(struct plink *);
/********** From the file "report.h" *************************************/
void Reprint(struct lemon *);
void ReportOutput(struct lemon *);
void ReportTable(struct lemon *, int, int);
void ReportHeader(struct lemon *);
void CompressTables(struct lemon *);
void ResortStates(struct lemon *);
/********** From the file "set.h" ****************************************/
void SetSize(int); /* All sets will be of size N */
char *SetNew(void); /* A new set for element 0..N */
void SetFree(char *); /* Deallocate a set */
int SetAdd(char *, int); /* Add element to a set */
int SetUnion(char *, char *); /* A <- A U B, thru element N */
#define SetFind(X, Y) (X[Y]) /* True if Y is in set X */
/********** From the file "struct.h" *************************************/
/*
** Principal data structures for the LEMON parser generator.
*/
typedef enum { LEMON_FALSE = 0, LEMON_TRUE } Boolean;
/* Symbols (terminals and nonterminals) of the grammar are stored
** in the following: */
enum symbol_type { TERMINAL, NONTERMINAL, MULTITERMINAL };
enum e_assoc { LEFT, RIGHT, NONE, UNK };
struct symbol {
const char *name; /* Name of the symbol */
int index; /* Index number for this symbol */
enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
struct rule *rule; /* Linked list of rules of this (if an NT) */
struct symbol *fallback; /* fallback token in case this token doesn't parse */
int prec; /* Precedence if defined (-1 otherwise) */
enum e_assoc assoc; /* Associativity if precedence is defined */
char *firstset; /* First-set for all rules of this symbol */
Boolean lambda; /* True if NT and can generate an empty string */
int useCnt; /* Number of times used */
char *destructor; /* Code which executes whenever this symbol is
** popped from the stack during error processing */
int destLineno; /* Line number for start of destructor. Set to
** -1 for duplicate destructors. */
char *datatype; /* The data type of information held by this
** object. Only used if type==NONTERMINAL */
int dtnum; /* The data type number. In the parser, the value
** stack is a union. The .yy%d element of this
** union is the correct data type for this object */
int bContent; /* True if this symbol ever carries content - if
** it is ever more than just syntax */
/* The following fields are used by MULTITERMINALs only */
int nsubsym; /* Number of constituent symbols in the MULTI */
struct symbol **subsym; /* Array of constituent symbols */
};
/* Each production rule in the grammar is stored in the following
** structure. */
struct rule {
struct symbol *lhs; /* Left-hand side of the rule */
const char *lhsalias; /* Alias for the LHS (NULL if none) */
int lhsStart; /* True if left-hand side is the start symbol */
int ruleline; /* Line number for the rule */
int nrhs; /* Number of RHS symbols */
struct symbol **rhs; /* The RHS symbols */
const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
int line; /* Line number at which code begins */
const char *code; /* The code executed when this rule is reduced */
const char *codePrefix; /* Setup code before code[] above */
const char *codeSuffix; /* Breakdown code after code[] above */
struct symbol *precsym; /* Precedence symbol for this rule */
int index; /* An index number for this rule */
int iRule; /* Rule number as used in the generated tables */
Boolean noCode; /* True if this rule has no associated C code */
Boolean codeEmitted; /* True if the code has been emitted already */
Boolean canReduce; /* True if this rule is ever reduced */
Boolean doesReduce; /* Reduce actions occur after optimization */
Boolean neverReduce; /* Reduce is theoretically possible, but prevented
** by actions or other outside implementation */
struct rule *nextlhs; /* Next rule with the same LHS */
struct rule *next; /* Next rule in the global list */
};
/* A configuration is a production rule of the grammar together with
** a mark (dot) showing how much of that rule has been processed so far.
** Configurations also contain a follow-set which is a list of terminal
** symbols which are allowed to immediately follow the end of the rule.
** Every configuration is recorded as an instance of the following: */
enum cfgstatus { COMPLETE, INCOMPLETE };
struct config {
struct rule *rp; /* The rule upon which the configuration is based */
int dot; /* The parse point */
char *fws; /* Follow-set for this configuration only */
struct plink *fplp; /* Follow-set forward propagation links */
struct plink *bplp; /* Follow-set backwards propagation links */
struct state *stp; /* Pointer to state which contains this */
enum cfgstatus status; /* used during followset and shift computations */
struct config *next; /* Next configuration in the state */
struct config *bp; /* The next basis configuration */
};
enum e_action {
SHIFT,
ACCEPT,
REDUCE,
ERROR,
SSCONFLICT, /* A shift/shift conflict */
SRCONFLICT, /* Was a reduce, but part of a conflict */
RRCONFLICT, /* Was a reduce, but part of a conflict */
SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
NOT_USED, /* Deleted by compression */
SHIFTREDUCE /* Shift first, then reduce */
};
/* Every shift or reduce operation is stored as one of the following */
struct action {
struct symbol *sp; /* The look-ahead symbol */
enum e_action type;
union {
struct state *stp; /* The new state, if a shift */
struct rule *rp; /* The rule, if a reduce */
} x;
struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */
struct action *next; /* Next action for this state */
struct action *collide; /* Next action with the same hash */
};
/* Each state of the generated parser's finite state machine
** is encoded as an instance of the following structure. */
struct state {
struct config *bp; /* The basis configurations for this state */
struct config *cfp; /* All configurations in this set */
int statenum; /* Sequential number for this state */
struct action *ap; /* List of actions for this state */
int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
int iDfltReduce; /* Default action is to REDUCE by this rule */
struct rule *pDfltReduce; /* The default REDUCE rule. */
int autoReduce; /* True if this is an auto-reduce state */
};
#define NO_OFFSET (-2147483647)
/* A followset propagation link indicates that the contents of one
** configuration followset should be propagated to another whenever
** the first changes. */
struct plink {
struct config *cfp; /* The configuration to which linked */
struct plink *next; /* The next propagate link */
};
/* The state vector for the entire parser generator is recorded as
** follows. (LEMON uses no global variables and makes little use of
** static variables. Fields in the following structure can be thought
** of as begin global variables in the program.) */
struct lemon {
struct state **sorted; /* Table of states sorted by state number */
struct rule *rule; /* List of all rules */
struct rule *startRule; /* First rule */
int nstate; /* Number of states */
int nxstate; /* nstate with tail degenerate states removed */
int nrule; /* Number of rules */
int nruleWithAction; /* Number of rules with actions */
int nsymbol; /* Number of terminal and nonterminal symbols */
int nterminal; /* Number of terminal symbols */
int minShiftReduce; /* Minimum shift-reduce action value */
int errAction; /* Error action value */
int accAction; /* Accept action value */
int noAction; /* No-op action value */
int minReduce; /* Minimum reduce action */
int maxAction; /* Maximum action value of any kind */
struct symbol **symbols; /* Sorted array of pointers to symbols */
int errorcnt; /* Number of errors */
struct symbol *errsym; /* The error symbol */
struct symbol *wildcard; /* Token that matches anything */
char *name; /* Name of the generated parser */
char *arg; /* Declaration of the 3th argument to parser */
char *ctx; /* Declaration of 2nd argument to constructor */
char *tokentype; /* Type of terminal symbols in the parser stack */
char *vartype; /* The default type of non-terminal symbols */
char *start; /* Name of the start symbol for the grammar */
char *stacksize; /* Size of the parser stack */
char *include; /* Code to put at the start of the C file */
char *error; /* Code to execute when an error is seen */
char *overflow; /* Code to execute on a stack overflow */
char *failure; /* Code to execute on parser failure */
char *accept; /* Code to execute when the parser excepts */
char *extracode; /* Code appended to the generated file */
char *tokendest; /* Code to execute to destroy token data */
char *vardest; /* Code for the default non-terminal destructor */
char *filename; /* Name of the input file */
char *outname; /* Name of the current output file */
char *tokenprefix; /* A prefix added to token names in the .h file */
int nconflict; /* Number of parsing conflicts */
int nactiontab; /* Number of entries in the yy_action[] table */
int nlookaheadtab; /* Number of entries in yy_lookahead[] */
int tablesize; /* Total table size of all tables in bytes */
int basisflag; /* Print only basis configurations */
int printPreprocessed; /* Show preprocessor output on stdout */
int has_fallback; /* True if any %fallback is seen in the grammar */
int nolinenosflag; /* True if #line statements should not be printed */
char *argv0; /* Name of the program */
};
#define MemoryCheck(X) \
if ((X) == 0) { \
memory_error(); \
}
/**************** From the file "table.h" *********************************/
/*
** All code in this file has been automatically generated
** from a specification in the file
** "table.q"
** by the associative array code building program "aagen".
** Do not edit this file! Instead, edit the specification
** file, then rerun aagen.
*/
/*
** Code for processing tables in the LEMON parser generator.
*/
/* Routines for handling a strings */
const char *Strsafe(const char *);
void Strsafe_init(void);
int Strsafe_insert(const char *);
const char *Strsafe_find(const char *);
/* Routines for handling symbols of the grammar */
struct symbol *Symbol_new(const char *);
int Symbolcmpp(const void *, const void *);
void Symbol_init(void);
int Symbol_insert(struct symbol *, const char *);
struct symbol *Symbol_find(const char *);
struct symbol *Symbol_Nth(int);
int Symbol_count(void);
struct symbol **Symbol_arrayof(void);
/* Routines to manage the state table */
int Configcmp(const char *, const char *);
struct state *State_new(void);
void State_init(void);
int State_insert(struct state *, struct config *);
struct state *State_find(struct config *);
struct state **State_arrayof(void);
/* Routines used for efficiency in Configlist_add */
void Configtable_init(void);
int Configtable_insert(struct config *);
struct config *Configtable_find(struct config *);
void Configtable_clear(int (*)(struct config *));
/****************** From the file "action.c" *******************************/
/*
** Routines processing parser actions in the LEMON parser generator.
*/
/* Allocate a new parser action */
static struct action *Action_new(void) {
static struct action *actionfreelist = 0;
struct action *newaction;
if (actionfreelist == 0) {
int i;
int amt = 100;
actionfreelist = (struct action *)calloc(amt, sizeof(struct action));
if (actionfreelist == 0) {
fprintf(stderr, "Unable to allocate memory for a new parser action.");
exit(1);
}
for (i = 0; i < amt - 1; i++)
actionfreelist[i].next = &actionfreelist[i + 1];
actionfreelist[amt - 1].next = 0;
}
newaction = actionfreelist;
actionfreelist = actionfreelist->next;
return newaction;
}
/* Compare two actions for sorting purposes. Return negative, zero, or
** positive if the first action is less than, equal to, or greater than
** the first
*/
static int actioncmp(struct action *ap1, struct action *ap2) {
int rc;
rc = ap1->sp->index - ap2->sp->index;
if (rc == 0) {
rc = (int)ap1->type - (int)ap2->type;
}
if (rc == 0 && (ap1->type == REDUCE || ap1->type == SHIFTREDUCE)) {
rc = ap1->x.rp->index - ap2->x.rp->index;
}
if (rc == 0) {
rc = (int)(ap2 - ap1);
}
return rc;
}
/* Sort parser actions */
static struct action *Action_sort(struct action *ap) {
ap = (struct action *)msort((char *)ap, (char **)&ap->next,
(int (*)(const char *, const char *))actioncmp);
return ap;
}
void Action_add(struct action **app, enum e_action type, struct symbol *sp,
char *arg) {
struct action *newaction;
newaction = Action_new();
newaction->next = *app;
*app = newaction;
newaction->type = type;
newaction->sp = sp;
newaction->spOpt = 0;
if (type == SHIFT) {
newaction->x.stp = (struct state *)arg;
} else {
newaction->x.rp = (struct rule *)arg;
}
}
/********************** New code to implement the "acttab" module ***********/
/*
** This module implements routines use to construct the yy_action[] table.
*/
/*
** The state of the yy_action table under construction is an instance of
** the following structure.
**
** The yy_action table maps the pair (state_number, lookahead) into an
** action_number. The table is an array of integers pairs. The state_number
** determines an initial offset into the yy_action array. The lookahead
** value is then added to this initial offset to get an index X into the
** yy_action array. If the aAction[X].lookahead equals the value of the
** of the lookahead input, then the value of the action_number output is
** aAction[X].action. If the lookaheads do not match then the
** default action for the state_number is returned.
**
** All actions associated with a single state_number are first entered
** into aLookahead[] using multiple calls to acttab_action(). Then the
** actions for that single state_number are placed into the aAction[]
** array with a single call to acttab_insert(). The acttab_insert() call
** also resets the aLookahead[] array in preparation for the next
** state number.
*/
struct lookahead_action {
int lookahead; /* Value of the lookahead token */
int action; /* Action to take on the given lookahead */
};
typedef struct acttab acttab;
struct acttab {
int nAction; /* Number of used slots in aAction[] */
int nActionAlloc; /* Slots allocated for aAction[] */
struct lookahead_action
*aAction, /* The yy_action[] table under construction */
*aLookahead; /* A single new transaction set */
int mnLookahead; /* Minimum aLookahead[].lookahead */
int mnAction; /* Action associated with mnLookahead */
int mxLookahead; /* Maximum aLookahead[].lookahead */
int nLookahead; /* Used slots in aLookahead[] */
int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
int nterminal; /* Number of terminal symbols */
int nsymbol; /* total number of symbols */
};
/* Return the number of entries in the yy_action table */
#define acttab_lookahead_size(X) ((X)->nAction)
/* The value for the N-th entry in yy_action */
#define acttab_yyaction(X, N) ((X)->aAction[N].action)
/* The value for the N-th entry in yy_lookahead */
#define acttab_yylookahead(X, N) ((X)->aAction[N].lookahead)
/* Free all memory associated with the given acttab */
void acttab_free(acttab *p) {
free(p->aAction);
free(p->aLookahead);
free(p);
}
/* Allocate a new acttab structure */
acttab *acttab_alloc(int nsymbol, int nterminal) {
acttab *p = (acttab *)calloc(1, sizeof(*p));
if (p == 0) {
fprintf(stderr, "Unable to allocate memory for a new acttab.");
exit(1);
}
memset(p, 0, sizeof(*p));
p->nsymbol = nsymbol;
p->nterminal = nterminal;
return p;
}
/* Add a new action to the current transaction set.
**
** This routine is called once for each lookahead for a particular
** state.
*/
void acttab_action(acttab *p, int lookahead, int action) {
if (p->nLookahead >= p->nLookaheadAlloc) {
p->nLookaheadAlloc += 25;
p->aLookahead = (struct lookahead_action *)realloc(
p->aLookahead, sizeof(p->aLookahead[0]) * p->nLookaheadAlloc);
if (p->aLookahead == 0) {
fprintf(stderr, "malloc failed\n");
exit(1);
}
}
if (p->nLookahead == 0) {
p->mxLookahead = lookahead;
p->mnLookahead = lookahead;
p->mnAction = action;
} else {
if (p->mxLookahead < lookahead) p->mxLookahead = lookahead;
if (p->mnLookahead > lookahead) {
p->mnLookahead = lookahead;
p->mnAction = action;
}
}
p->aLookahead[p->nLookahead].lookahead = lookahead;
p->aLookahead[p->nLookahead].action = action;
p->nLookahead++;
}
/*
** Add the transaction set built up with prior calls to acttab_action()
** into the current action table. Then reset the transaction set back
** to an empty set in preparation for a new round of acttab_action() calls.
**
** Return the offset into the action table of the new transaction.
**
** If the makeItSafe parameter is true, then the offset is chosen so that
** it is impossible to overread the yy_lookaside[] table regardless of
** the lookaside token. This is done for the terminal symbols, as they
** come from external inputs and can contain syntax errors. When makeItSafe
** is false, there is more flexibility in selecting offsets, resulting in
** a smaller table. For non-terminal symbols, which are never syntax errors,
** makeItSafe can be false.
*/
int acttab_insert(acttab *p, int makeItSafe) {
int i, j, k, n, end;
assert(p->nLookahead > 0);
/* Make sure we have enough space to hold the expanded action table
** in the worst case. The worst case occurs if the transaction set
** must be appended to the current action table
*/
n = p->nsymbol + 1;
if (p->nAction + n >= p->nActionAlloc) {
int oldAlloc = p->nActionAlloc;
p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
p->aAction = (struct lookahead_action *)realloc(
p->aAction, sizeof(p->aAction[0]) * p->nActionAlloc);
if (p->aAction == 0) {
fprintf(stderr, "malloc failed\n");
exit(1);
}
for (i = oldAlloc; i < p->nActionAlloc; i++) {
p->aAction[i].lookahead = -1;
p->aAction[i].action = -1;
}
}
/* Scan the existing action table looking for an offset that is a
** duplicate of the current transaction set. Fall out of the loop
** if and when the duplicate is found.
**
** i is the index in p->aAction[] where p->mnLookahead is inserted.
*/
end = makeItSafe ? p->mnLookahead : 0;
for (i = p->nAction - 1; i >= end; i--) {
if (p->aAction[i].lookahead == p->mnLookahead) {
/* All lookaheads and actions in the aLookahead[] transaction
** must match against the candidate aAction[i] entry. */
if (p->aAction[i].action != p->mnAction) continue;
for (j = 0; j < p->nLookahead; j++) {
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
if (k < 0 || k >= p->nAction) break;
if (p->aLookahead[j].lookahead != p->aAction[k].lookahead) break;
if (p->aLookahead[j].action != p->aAction[k].action) break;
}
if (j < p->nLookahead) continue;
/* No possible lookahead value that is not in the aLookahead[]
** transaction is allowed to match aAction[i] */
n = 0;
for (j = 0; j < p->nAction; j++) {
if (p->aAction[j].lookahead < 0) continue;
if (p->aAction[j].lookahead == j + p->mnLookahead - i) n++;
}
if (n == p->nLookahead) {
break; /* An exact match is found at offset i */
}
}
}
/* If no existing offsets exactly match the current transaction, find an
** an empty offset in the aAction[] table in which we can add the
** aLookahead[] transaction.
*/
if (i < end) {
/* Look for holes in the aAction[] table that fit the current
** aLookahead[] transaction. Leave i set to the offset of the hole.
** If no holes are found, i is left at p->nAction, which means the
** transaction will be appended. */
i = makeItSafe ? p->mnLookahead : 0;
for (; i < p->nActionAlloc - p->mxLookahead; i++) {
if (p->aAction[i].lookahead < 0) {
for (j = 0; j < p->nLookahead; j++) {
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
if (k < 0) break;
if (p->aAction[k].lookahead >= 0) break;
}
if (j < p->nLookahead) continue;
for (j = 0; j < p->nAction; j++) {
if (p->aAction[j].lookahead == j + p->mnLookahead - i) break;
}
if (j == p->nAction) {
break; /* Fits in empty slots */
}
}
}
}
/* Insert transaction set at index i. */
#if 0
printf("Acttab:");
for(j=0; j<p->nLookahead; j++){
printf(" %d", p->aLookahead[j].lookahead);
}
printf(" inserted at %d\n", i);
#endif
for (j = 0; j < p->nLookahead; j++) {
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
p->aAction[k] = p->aLookahead[j];
if (k >= p->nAction) p->nAction = k + 1;
}
if (makeItSafe && i + p->nterminal >= p->nAction)
p->nAction = i + p->nterminal + 1;
p->nLookahead = 0;
/* Return the offset that is added to the lookahead in order to get the
** index into yy_action of the action */
return i - p->mnLookahead;
}
/*
** Return the size of the action table without the trailing syntax error
** entries.
*/
int acttab_action_size(acttab *p) {
int n = p->nAction;
while (n > 0 && p->aAction[n - 1].lookahead < 0) {
n--;
}
return n;
}
/********************** From the file "build.c" *****************************/
/*
** Routines to construction the finite state machine for the LEMON
** parser generator.
*/
/* Find a precedence symbol of every rule in the grammar.
**
** Those rules which have a precedence symbol coded in the input
** grammar using the "[symbol]" construct will already have the
** rp->precsym field filled. Other rules take as their precedence
** symbol the first RHS symbol with a defined precedence. If there
** are not RHS symbols with a defined precedence, the precedence
** symbol field is left blank.
*/
void FindRulePrecedences(struct lemon *xp) {
struct rule *rp;
for (rp = xp->rule; rp; rp = rp->next) {
if (rp->precsym == 0) {
int i, j;
for (i = 0; i < rp->nrhs && rp->precsym == 0; i++) {
struct symbol *sp = rp->rhs[i];
if (sp->type == MULTITERMINAL) {
for (j = 0; j < sp->nsubsym; j++) {
if (sp->subsym[j]->prec >= 0) {
rp->precsym = sp->subsym[j];
break;
}
}
} else if (sp->prec >= 0) {
rp->precsym = rp->rhs[i];
}
}
}
}
return;
}
/* Find all nonterminals which will generate the empty string.
** Then go back and compute the first sets of every nonterminal.
** The first set is the set of all terminal symbols which can begin
** a string generated by that nonterminal.
*/
void FindFirstSets(struct lemon *lemp) {
int i, j;
struct rule *rp;
int progress;
for (i = 0; i < lemp->nsymbol; i++) {
lemp->symbols[i]->lambda = LEMON_FALSE;
}
for (i = lemp->nterminal; i < lemp->nsymbol; i++) {
lemp->symbols[i]->firstset = SetNew();
}
/* First compute all lambdas */
do {
progress = 0;
for (rp = lemp->rule; rp; rp = rp->next) {
if (rp->lhs->lambda) continue;
for (i = 0; i < rp->nrhs; i++) {
struct symbol *sp = rp->rhs[i];
assert(sp->type == NONTERMINAL || sp->lambda == LEMON_FALSE);
if (sp->lambda == LEMON_FALSE) break;
}
if (i == rp->nrhs) {
rp->lhs->lambda = LEMON_TRUE;
progress = 1;
}
}
} while (progress);
/* Now compute all first sets */
do {
struct symbol *s1, *s2;
progress = 0;
for (rp = lemp->rule; rp; rp = rp->next) {
s1 = rp->lhs;
for (i = 0; i < rp->nrhs; i++) {
s2 = rp->rhs[i];
if (s2->type == TERMINAL) {
progress += SetAdd(s1->firstset, s2->index);
break;
} else if (s2->type == MULTITERMINAL) {
for (j = 0; j < s2->nsubsym; j++) {
progress += SetAdd(s1->firstset, s2->subsym[j]->index);
}
break;
} else if (s1 == s2) {
if (s1->lambda == LEMON_FALSE) break;
} else {
progress += SetUnion(s1->firstset, s2->firstset);
if (s2->lambda == LEMON_FALSE) break;
}
}
}
} while (progress);
return;
}
/* Compute all LR(0) states for the grammar. Links
** are added to between some states so that the LR(1) follow sets
** can be computed later.
*/
PRIVATE struct state *getstate(struct lemon *); /* forward reference */
void FindStates(struct lemon *lemp) {
struct symbol *sp;
struct rule *rp;
Configlist_init();
/* Find the start symbol */
if (lemp->start) {
sp = Symbol_find(lemp->start);
if (sp == 0) {
ErrorMsg(
lemp->filename, 0,
"The specified start symbol \"%s\" is not "
"in a nonterminal of the grammar. \"%s\" will be used as the start "
"symbol instead.",
lemp->start, lemp->startRule->lhs->name);
lemp->errorcnt++;
sp = lemp->startRule->lhs;
}
} else {
sp = lemp->startRule->lhs;
}
/* Make sure the start symbol doesn't occur on the right-hand side of
** any rule. Report an error if it does. (YACC would generate a new
** start symbol in this case.) */
for (rp = lemp->rule; rp; rp = rp->next) {
int i;
for (i = 0; i < rp->nrhs; i++) {
if (rp->rhs[i] == sp) { /* FIX ME: Deal with multiterminals */
ErrorMsg(
lemp->filename, 0,
"The start symbol \"%s\" occurs on the "
"right-hand side of a rule. This will result in a parser which "
"does not work properly.",
sp->name);
lemp->errorcnt++;
}
}
}
/* The basis configuration set for the first state
** is all rules which have the start symbol as their
** left-hand side */
for (rp = sp->rule; rp; rp = rp->nextlhs) {
struct config *newcfp;
rp->lhsStart = 1;
newcfp = Configlist_addbasis(rp, 0);
SetAdd(newcfp->fws, 0);
}
/* Compute the first state. All other states will be
** computed automatically during the computation of the first one.
** The returned pointer to the first state is not used. */
(void)getstate(lemp);
return;
}
/* Return a pointer to a state which is described by the configuration
** list which has been built from calls to Configlist_add.
*/
PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
PRIVATE struct state *getstate(struct lemon *lemp) {
struct config *cfp, *bp;
struct state *stp;
/* Extract the sorted basis of the new state. The basis was constructed
** by prior calls to "Configlist_addbasis()". */
Configlist_sortbasis();
bp = Configlist_basis();
/* Get a state with the same basis */
stp = State_find(bp);
if (stp) {
/* A state with the same basis already exists! Copy all the follow-set
** propagation links from the state under construction into the
** preexisting state, then return a pointer to the preexisting state */
struct config *x, *y;
for (x = bp, y = stp->bp; x && y; x = x->bp, y = y->bp) {
Plink_copy(&y->bplp, x->bplp);
Plink_delete(x->fplp);
x->fplp = x->bplp = 0;
}
cfp = Configlist_return();
Configlist_eat(cfp);
} else {
/* This really is a new state. Construct all the details */
Configlist_closure(lemp); /* Compute the configuration closure */
Configlist_sort(); /* Sort the configuration closure */
cfp = Configlist_return(); /* Get a pointer to the config list */
stp = State_new(); /* A new state structure */
MemoryCheck(stp);
stp->bp = bp; /* Remember the configuration basis */
stp->cfp = cfp; /* Remember the configuration closure */
stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
stp->ap = 0; /* No actions, yet. */
State_insert(stp, stp->bp); /* Add to the state table */
buildshifts(lemp, stp); /* Recursively compute successor states */
}
return stp;
}
/*
** Return true if two symbols are the same.
*/
int same_symbol(struct symbol *a, struct symbol *b) {
int i;
if (a == b) return 1;
if (a->type != MULTITERMINAL) return 0;
if (b->type != MULTITERMINAL) return 0;
if (a->nsubsym != b->nsubsym) return 0;
for (i = 0; i < a->nsubsym; i++) {
if (a->subsym[i] != b->subsym[i]) return 0;
}
return 1;
}
/* Construct all successor states to the given state. A "successor"
** state is any state which can be reached by a shift action.
*/
PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) {
struct config *cfp; /* For looping thru the config closure of "stp" */
struct config *bcfp; /* For the inner loop on config closure of "stp" */
struct config *newcfg; /* */
struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
struct state *newstp; /* A pointer to a successor state */
/* Each configuration becomes complete after it contibutes to a successor
** state. Initially, all configurations are incomplete */
for (cfp = stp->cfp; cfp; cfp = cfp->next) cfp->status = INCOMPLETE;
/* Loop through all configurations of the state "stp" */
for (cfp = stp->cfp; cfp; cfp = cfp->next) {
if (cfp->status == COMPLETE) continue; /* Already used by inner loop */
if (cfp->dot >= cfp->rp->nrhs) continue; /* Can't shift this config */
Configlist_reset(); /* Reset the new config set */
sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
/* For every configuration in the state "stp" which has the symbol "sp"
** following its dot, add the same configuration to the basis set under
** construction but with the dot shifted one symbol to the right. */
for (bcfp = cfp; bcfp; bcfp = bcfp->next) {
if (bcfp->status == COMPLETE) continue; /* Already used */
if (bcfp->dot >= bcfp->rp->nrhs) continue; /* Can't shift this one */
bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
if (!same_symbol(bsp, sp)) continue; /* Must be same as for "cfp" */
bcfp->status = COMPLETE; /* Mark this config as used */
newcfg = Configlist_addbasis(bcfp->rp, bcfp->dot + 1);
Plink_add(&newcfg->bplp, bcfp);
}
/* Get a pointer to the state described by the basis configuration set
** constructed in the preceding loop */
newstp = getstate(lemp);
/* The state "newstp" is reached from the state "stp" by a shift action
** on the symbol "sp" */
if (sp->type == MULTITERMINAL) {
int i;
for (i = 0; i < sp->nsubsym; i++) {
Action_add(&stp->ap, SHIFT, sp->subsym[i], (char *)newstp);
}
} else {
Action_add(&stp->ap, SHIFT, sp, (char *)newstp);
}
}
}
/*
** Construct the propagation links
*/
void FindLinks(struct lemon *lemp) {
int i;
struct config *cfp, *other;
struct state *stp;
struct plink *plp;
/* Housekeeping detail:
** Add to every propagate link a pointer back to the state to
** which the link is attached. */
for (i = 0; i < lemp->nstate; i++) {
stp = lemp->sorted[i];
for (cfp = stp->cfp; cfp; cfp = cfp->next) {
cfp->stp = stp;
}
}
/* Convert all backlinks into forward links. Only the forward
** links are used in the follow-set computation. */
for (i = 0; i < lemp->nstate; i++) {
stp = lemp->sorted[i];
for (cfp = stp->cfp; cfp; cfp = cfp->next) {
for (plp = cfp->bplp; plp; plp = plp->next) {
other = plp->cfp;
Plink_add(&other->fplp, cfp);
}
}
}
}
/* Compute all followsets.
**
** A followset is the set of all symbols which can come immediately
** after a configuration.
*/
void FindFollowSets(struct lemon *lemp) {
int i;
struct config *cfp;
struct plink *plp;
int progress;
int change;
for (i = 0; i < lemp->nstate; i++) {
for (cfp = lemp->sorted[i]->cfp; cfp; cfp = cfp->next) {
cfp->status = INCOMPLETE;
}
}
do {
progress = 0;
for (i = 0; i < lemp->nstate; i++) {
for (cfp = lemp->sorted[i]->cfp; cfp; cfp = cfp->next) {
if (cfp->status == COMPLETE) continue;
for (plp = cfp->fplp; plp; plp = plp->next) {
change = SetUnion(plp->cfp->fws, cfp->fws);
if (change) {
plp->cfp->status = INCOMPLETE;
progress = 1;
}
}
cfp->status = COMPLETE;
}
}
} while (progress);
}
static int resolve_conflict(struct action *, struct action *);
/* Compute the reduce actions, and resolve conflicts.
*/
void FindActions(struct lemon *lemp) {
int i, j;
struct config *cfp;
struct state *stp;
struct symbol *sp;
struct rule *rp;
/* Add all of the reduce actions
** A reduce action is added for each element of the followset of
** a configuration which has its dot at the extreme right.
*/
for (i = 0; i < lemp->nstate; i++) { /* Loop over all states */
stp = lemp->sorted[i];
for (cfp = stp->cfp; cfp;
cfp = cfp->next) { /* Loop over all configurations */
if (cfp->rp->nrhs == cfp->dot) { /* Is dot at extreme right? */
for (j = 0; j < lemp->nterminal; j++) {
if (SetFind(cfp->fws, j)) {
/* Add a reduce action to the state "stp" which will reduce by the
** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
Action_add(&stp->ap, REDUCE, lemp->symbols[j], (char *)cfp->rp);
}
}
}
}
}
/* Add the accepting token */
if (lemp->start) {
sp = Symbol_find(lemp->start);
if (sp == 0) sp = lemp->startRule->lhs;
} else {
sp = lemp->startRule->lhs;
}
/* Add to the first state (which is always the starting state of the
** finite state machine) an action to ACCEPT if the lookahead is the
** start nonterminal. */
Action_add(&lemp->sorted[0]->ap, ACCEPT, sp, 0);
/* Resolve conflicts */
for (i = 0; i < lemp->nstate; i++) {
struct action *ap, *nap;
stp = lemp->sorted[i];
/* assert( stp->ap ); */
stp->ap = Action_sort(stp->ap);
for (ap = stp->ap; ap && ap->next; ap = ap->next) {
for (nap = ap->next; nap && nap->sp == ap->sp; nap = nap->next) {
/* The two actions "ap" and "nap" have the same lookahead.
** Figure out which one should be used */
lemp->nconflict += resolve_conflict(ap, nap);
}
}
}
/* Report an error for each rule that can never be reduced. */
for (rp = lemp->rule; rp; rp = rp->next) rp->canReduce = LEMON_FALSE;
for (i = 0; i < lemp->nstate; i++) {
struct action *ap;
for (ap = lemp->sorted[i]->ap; ap; ap = ap->next) {
if (ap->type == REDUCE) ap->x.rp->canReduce = LEMON_TRUE;
}
}
for (rp = lemp->rule; rp; rp = rp->next) {
if (rp->canReduce) continue;
ErrorMsg(lemp->filename, rp->ruleline, "This rule can not be reduced.\n");
lemp->errorcnt++;
}
}
/* Resolve a conflict between the two given actions. If the
** conflict can't be resolved, return non-zero.
**
** NO LONGER TRUE:
** To resolve a conflict, first look to see if either action
** is on an error rule. In that case, take the action which
** is not associated with the error rule. If neither or both
** actions are associated with an error rule, then try to
** use precedence to resolve the conflict.
**
** If either action is a SHIFT, then it must be apx. This
** function won't work if apx->type==REDUCE and apy->type==SHIFT.
*/
static int resolve_conflict(struct action *apx, struct action *apy) {
struct symbol *spx, *spy;
int errcnt = 0;
assert(apx->sp == apy->sp); /* Otherwise there would be no conflict */
if (apx->type == SHIFT && apy->type == SHIFT) {
apy->type = SSCONFLICT;
errcnt++;
}
if (apx->type == SHIFT && apy->type == REDUCE) {
spx = apx->sp;
spy = apy->x.rp->precsym;
if (spy == 0 || spx->prec < 0 || spy->prec < 0) {
/* Not enough precedence information. */
apy->type = SRCONFLICT;
errcnt++;
} else if (spx->prec > spy->prec) { /* higher precedence wins */
apy->type = RD_RESOLVED;
} else if (spx->prec < spy->prec) {
apx->type = SH_RESOLVED;
} else if (spx->prec == spy->prec &&
spx->assoc == RIGHT) { /* Use operator */
apy->type = RD_RESOLVED; /* associativity */
} else if (spx->prec == spy->prec &&
spx->assoc == LEFT) { /* to break tie */
apx->type = SH_RESOLVED;
} else {
assert(spx->prec == spy->prec && spx->assoc == NONE);
apx->type = ERROR;
}
} else if (apx->type == REDUCE && apy->type == REDUCE) {
spx = apx->x.rp->precsym;
spy = apy->x.rp->precsym;
if (spx == 0 || spy == 0 || spx->prec < 0 || spy->prec < 0 ||
spx->prec == spy->prec) {
apy->type = RRCONFLICT;
errcnt++;
} else if (spx->prec > spy->prec) {
apy->type = RD_RESOLVED;
} else if (spx->prec < spy->prec) {
apx->type = RD_RESOLVED;
}
} else {
assert(apx->type == SH_RESOLVED || apx->type == RD_RESOLVED ||
apx->type == SSCONFLICT || apx->type == SRCONFLICT ||
apx->type == RRCONFLICT || apy->type == SH_RESOLVED ||
apy->type == RD_RESOLVED || apy->type == SSCONFLICT ||
apy->type == SRCONFLICT || apy->type == RRCONFLICT);
/* The REDUCE/SHIFT case cannot happen because SHIFTs come before
** REDUCEs on the list. If we reach this point it must be because
** the parser conflict had already been resolved. */
}
return errcnt;
}
/********************* From the file "configlist.c" *************************/
/*
** Routines to processing a configuration list and building a state
** in the LEMON parser generator.
*/
static struct config *freelist = 0; /* List of free configurations */
static struct config *current = 0; /* Top of list of configurations */
static struct config **currentend = 0; /* Last on list of configs */
static struct config *basis = 0; /* Top of list of basis configs */
static struct config **basisend = 0; /* End of list of basis configs */
/* Return a pointer to a new configuration */
PRIVATE struct config *newconfig(void) {
struct config *newcfg;
if (freelist == 0) {
int i;
int amt = 3;
freelist = (struct config *)calloc(amt, sizeof(struct config));
if (freelist == 0) {
fprintf(stderr, "Unable to allocate memory for a new configuration.");
exit(1);
}
for (i = 0; i < amt - 1; i++) freelist[i].next = &freelist[i + 1];
freelist[amt - 1].next = 0;
}
newcfg = freelist;
freelist = freelist->next;
return newcfg;
}
/* The configuration "old" is no longer used */
PRIVATE void deleteconfig(struct config *old) {
old->next = freelist;
freelist = old;
}
/* Initialized the configuration list builder */
void Configlist_init(void) {
current = 0;
currentend = &current;
basis = 0;
basisend = &basis;
Configtable_init();
return;
}
/* Initialized the configuration list builder */
void Configlist_reset(void) {
current = 0;
currentend = &current;
basis = 0;
basisend = &basis;
Configtable_clear(0);
return;
}
/* Add another configuration to the configuration list */
struct config *Configlist_add(
struct rule *rp, /* The rule */
int dot /* Index into the RHS of the rule where the dot goes */
) {
struct config *cfp, model;
assert(currentend != 0);
model.rp = rp;
model.dot = dot;
cfp = Configtable_find(&model);
if (cfp == 0) {
cfp = newconfig();
cfp->rp = rp;
cfp->dot = dot;
cfp->fws = SetNew();
cfp->stp = 0;
cfp->fplp = cfp->bplp = 0;
cfp->next = 0;
cfp->bp = 0;
*currentend = cfp;
currentend = &cfp->next;
Configtable_insert(cfp);
}
return cfp;
}
/* Add a basis configuration to the configuration list */
struct config *Configlist_addbasis(struct rule *rp, int dot) {
struct config *cfp, model;
assert(basisend != 0);
assert(currentend != 0);
model.rp = rp;
model.dot = dot;
cfp = Configtable_find(&model);
if (cfp == 0) {
cfp = newconfig();
cfp->rp = rp;
cfp->dot = dot;
cfp->fws = SetNew();
cfp->stp = 0;
cfp->fplp = cfp->bplp = 0;
cfp->next = 0;
cfp->bp = 0;
*currentend = cfp;
currentend = &cfp->next;
*basisend = cfp;
basisend = &cfp->bp;
Configtable_insert(cfp);
}
return cfp;
}
/* Compute the closure of the configuration list */
void Configlist_closure(struct lemon *lemp) {
struct config *cfp, *newcfp;
struct rule *rp, *newrp;
struct symbol *sp, *xsp;
int i, dot;
assert(currentend != 0);
for (cfp = current; cfp; cfp = cfp->next) {
rp = cfp->rp;
dot = cfp->dot;
if (dot >= rp->nrhs) continue;
sp = rp->rhs[dot];
if (sp->type == NONTERMINAL) {
if (sp->rule == 0 && sp != lemp->errsym) {
ErrorMsg(lemp->filename, rp->line, "Nonterminal \"%s\" has no rules.",
sp->name);
lemp->errorcnt++;
}
for (newrp = sp->rule; newrp; newrp = newrp->nextlhs) {
newcfp = Configlist_add(newrp, 0);
for (i = dot + 1; i < rp->nrhs; i++) {
xsp = rp->rhs[i];
if (xsp->type == TERMINAL) {
SetAdd(newcfp->fws, xsp->index);
break;
} else if (xsp->type == MULTITERMINAL) {
int k;
for (k = 0; k < xsp->nsubsym; k++) {
SetAdd(newcfp->fws, xsp->subsym[k]->index);
}
break;
} else {
SetUnion(newcfp->fws, xsp->firstset);
if (xsp->lambda == LEMON_FALSE) break;
}
}
if (i == rp->nrhs) Plink_add(&cfp->fplp, newcfp);
}
}
}
return;
}
/* Sort the configuration list */
void Configlist_sort(void) {
current = (struct config *)msort((char *)current, (char **)&(current->next),
Configcmp);
currentend = 0;
return;
}
/* Sort the basis configuration list */
void Configlist_sortbasis(void) {
basis = (struct config *)msort((char *)current, (char **)&(current->bp),
Configcmp);
basisend = 0;
return;
}
/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_return(void) {
struct config *old;
old = current;
current = 0;
currentend = 0;
return old;
}
/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_basis(void) {
struct config *old;
old = basis;
basis = 0;
basisend = 0;
return old;
}
/* Free all elements of the given configuration list */
void Configlist_eat(struct config *cfp) {
struct config *nextcfp;
for (; cfp; cfp = nextcfp) {
nextcfp = cfp->next;
assert(cfp->fplp == 0);
assert(cfp->bplp == 0);
if (cfp->fws) SetFree(cfp->fws);
deleteconfig(cfp);
}
return;
}
/***************** From the file "error.c" *********************************/
/*
** Code for printing error message.
*/
void ErrorMsg(const char *filename, int lineno, const char *format, ...) {
va_list ap;
fprintf(stderr, "%s:%d: ", filename, lineno);
va_start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
fprintf(stderr, "\n");
}
/**************** From the file "main.c" ************************************/
/*
** Main program file for the LEMON parser generator.
*/
/* Report an out-of-memory condition and abort. This function
** is used mostly by the "MemoryCheck" macro in struct.h
*/
void memory_error(void) {
fprintf(stderr, "Out of memory. Aborting...\n");
exit(1);
}
static int nDefine = 0; /* Number of -D options on the command line */
static char **azDefine = 0; /* Name of the -D macros */
/* This routine is called with the argument to each -D command-line option.
** Add the macro defined to the azDefine array.
*/
static void handle_D_option(char *z) {
char **paz;
nDefine++;
azDefine = (char **)realloc(azDefine, sizeof(azDefine[0]) * nDefine);
if (azDefine == 0) {
fprintf(stderr, "out of memory\n");
exit(1);
}
paz = &azDefine[nDefine - 1];
*paz = (char *)malloc(lemonStrlen(z) + 1);
if (*paz == 0) {
fprintf(stderr, "out of memory\n");
exit(1);
}
lemon_strcpy(*paz, z);
for (z = *paz; *z && *z != '='; z++) {
}
*z = 0;
}
/* Rember the name of the output directory
*/
static char *outputDir = NULL;
static void handle_d_option(char *z) {
outputDir = (char *)malloc(lemonStrlen(z) + 1);
if (outputDir == 0) {
fprintf(stderr, "out of memory\n");
exit(1);
}
lemon_strcpy(outputDir, z);
}
static char *user_templatename = NULL;
static void handle_T_option(char *z) {
user_templatename = (char *)malloc(lemonStrlen(z) + 1);
if (user_templatename == 0) {
memory_error();
}
lemon_strcpy(user_templatename, z);
}
/* Merge together to lists of rules ordered by rule.iRule */
static struct rule *Rule_merge(struct rule *pA, struct rule *pB) {
struct rule *pFirst = 0;
struct rule **ppPrev = &pFirst;
while (pA && pB) {
if (pA->iRule < pB->iRule) {
*ppPrev = pA;
ppPrev = &pA->next;
pA = pA->next;
} else {
*ppPrev = pB;
ppPrev = &pB->next;
pB = pB->next;
}
}
if (pA) {
*ppPrev = pA;
} else {
*ppPrev = pB;
}
return pFirst;
}
/*
** Sort a list of rules in order of increasing iRule value
*/
static struct rule *Rule_sort(struct rule *rp) {
unsigned int i;
struct rule *pNext;
struct rule *x[32];
memset(x, 0, sizeof(x));
while (rp) {
pNext = rp->next;
rp->next = 0;
for (i = 0; i < sizeof(x) / sizeof(x[0]) - 1 && x[i]; i++) {
rp = Rule_merge(x[i], rp);
x[i] = 0;
}
x[i] = rp;
rp = pNext;
}
rp = 0;
for (i = 0; i < sizeof(x) / sizeof(x[0]); i++) {
rp = Rule_merge(x[i], rp);
}
return rp;
}
/* forward reference */
static const char *minimum_size_type(int lwr, int upr, int *pnByte);
/* Print a single line of the "Parser Stats" output
*/
static void stats_line(const char *zLabel, int iValue) {
int nLabel = lemonStrlen(zLabel);
printf(" %s%.*s %5d\n", zLabel, 35 - nLabel,
"................................", iValue);
}
/* The main program. Parse the command line and do it... */
int main(int argc, char **argv) {
static int version = 0;
static int rpflag = 0;
static int basisflag = 0;
static int compress = 0;
static int quiet = 0;
static int statistics = 0;
static int mhflag = 0;
static int nolinenosflag = 0;
static int noResort = 0;
static int sqlFlag = 0;
static int printPP = 0;
static const struct s_options options[] = {
{OPT_FLAG, "b", (char *)&basisflag, "Print only the basis in report."},
{OPT_FLAG, "c", (char *)&compress, "Don't compress the action table."},
{OPT_FSTR, "d", (char *)&handle_d_option,
"Output directory. Default '.'"},
{OPT_FSTR, "D", (char *)handle_D_option, "Define an %ifdef macro."},
{OPT_FLAG, "E", (char *)&printPP,
"Print input file after preprocessing."},
{OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"},
{OPT_FLAG, "g", (char *)&rpflag, "Print grammar without actions."},
{OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"},
{OPT_FLAG, "m", (char *)&mhflag, "Output a makeheaders compatible file."},
{OPT_FLAG, "l", (char *)&nolinenosflag, "Do not print #line statements."},
{OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"},
{OPT_FLAG, "p", (char *)&showPrecedenceConflict,
"Show conflicts resolved by precedence rules"},
{OPT_FLAG, "q", (char *)&quiet, "(Quiet) Don't print the report file."},
{OPT_FLAG, "r", (char *)&noResort, "Do not sort or renumber states"},
{OPT_FLAG, "s", (char *)&statistics,
"Print parser stats to standard output."},
{OPT_FLAG, "S", (char *)&sqlFlag,
"Generate the *.sql file describing the parser tables."},
{OPT_FLAG, "x", (char *)&version, "Print the version number."},
{OPT_FSTR, "T", (char *)handle_T_option, "Specify a template file."},
{OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"},
{OPT_FLAG, 0, 0, 0}};
int i;
int exitcode;
struct lemon lem;
struct rule *rp;
(void)argc;
OptInit(argv, options, stderr);
if (version) {
printf("Lemon version 1.0\n");
exit(0);
}
if (OptNArgs() != 1) {
fprintf(stderr, "Exactly one filename argument is required.\n");
exit(1);
}
memset(&lem, 0, sizeof(lem));
lem.errorcnt = 0;
/* Initialize the machine */
Strsafe_init();
Symbol_init();
State_init();
lem.argv0 = argv[0];
lem.filename = OptArg(0);
lem.basisflag = basisflag;
lem.nolinenosflag = nolinenosflag;
lem.printPreprocessed = printPP;
Symbol_new("$");
/* Parse the input file */
Parse(&lem);
if (lem.printPreprocessed || lem.errorcnt) exit(lem.errorcnt);
if (lem.nrule == 0) {
fprintf(stderr, "Empty grammar.\n");
exit(1);
}
lem.errsym = Symbol_find("error");
/* Count and index the symbols of the grammar */
Symbol_new("{default}");
lem.nsymbol = Symbol_count();
lem.symbols = Symbol_arrayof();
for (i = 0; i < lem.nsymbol; i++) lem.symbols[i]->index = i;
qsort(lem.symbols, lem.nsymbol, sizeof(struct symbol *), Symbolcmpp);
for (i = 0; i < lem.nsymbol; i++) lem.symbols[i]->index = i;
while (lem.symbols[i - 1]->type == MULTITERMINAL) {
i--;
}
assert(strcmp(lem.symbols[i - 1]->name, "{default}") == 0);
lem.nsymbol = i - 1;
for (i = 1; ISUPPER(lem.symbols[i]->name[0]); i++)
;
lem.nterminal = i;
/* Assign sequential rule numbers. Start with 0. Put rules that have no
** reduce action C-code associated with them last, so that the switch()
** statement that selects reduction actions will have a smaller jump table.
*/
for (i = 0, rp = lem.rule; rp; rp = rp->next) {
rp->iRule = rp->code ? i++ : -1;
}
lem.nruleWithAction = i;
for (rp = lem.rule; rp; rp = rp->next) {
if (rp->iRule < 0) rp->iRule = i++;
}
lem.startRule = lem.rule;
lem.rule = Rule_sort(lem.rule);
/* Generate a reprint of the grammar, if requested on the command line */
if (rpflag) {
Reprint(&lem);
} else {
/* Initialize the size for all follow and first sets */
SetSize(lem.nterminal + 1);
/* Find the precedence for every production rule (that has one) */
FindRulePrecedences(&lem);
/* Compute the lambda-nonterminals and the first-sets for every
** nonterminal */
FindFirstSets(&lem);
/* Compute all LR(0) states. Also record follow-set propagation
** links so that the follow-set can be computed later */
lem.nstate = 0;
FindStates(&lem);
lem.sorted = State_arrayof();
/* Tie up loose ends on the propagation links */
FindLinks(&lem);
/* Compute the follow set of every reducible configuration */
FindFollowSets(&lem);
/* Compute the action tables */
FindActions(&lem);
/* Compress the action tables */
if (compress == 0) CompressTables(&lem);
/* Reorder and renumber the states so that states with fewer choices
** occur at the end. This is an optimization that helps make the
** generated parser tables smaller. */
if (noResort == 0) ResortStates(&lem);
/* Generate a report of the parser generated. (the "y.output" file) */
if (!quiet) ReportOutput(&lem);
/* Generate the source code for the parser */
ReportTable(&lem, mhflag, sqlFlag);
/* Produce a header file for use by the scanner. (This step is
** omitted if the "-m" option is used because makeheaders will
** generate the file for us.) */
if (!mhflag) ReportHeader(&lem);
}
if (statistics) {
printf("Parser statistics:\n");
stats_line("terminal symbols", lem.nterminal);
stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
stats_line("total symbols", lem.nsymbol);
stats_line("rules", lem.nrule);
stats_line("states", lem.nxstate);
stats_line("conflicts", lem.nconflict);
stats_line("action table entries", lem.nactiontab);
stats_line("lookahead table entries", lem.nlookaheadtab);
stats_line("total table size (bytes)", lem.tablesize);
}
if (lem.nconflict > 0) {
fprintf(stderr, "%d parsing conflicts.\n", lem.nconflict);
}
/* return 0 on success, 1 on failure. */
exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
exit(exitcode);
return (exitcode);
}
/******************** From the file "msort.c" *******************************/
/*
** A generic merge-sort program.
**
** USAGE:
** Let "ptr" be a pointer to some structure which is at the head of
** a null-terminated list. Then to sort the list call:
**
** ptr = msort(ptr,&(ptr->next),cmpfnc);
**
** In the above, "cmpfnc" is a pointer to a function which compares
** two instances of the structure and returns an integer, as in
** strcmp. The second argument is a pointer to the pointer to the
** second element of the linked list. This address is used to compute
** the offset to the "next" field within the structure. The offset to
** the "next" field must be constant for all structures in the list.
**
** The function returns a new pointer which is the head of the list
** after sorting.
**
** ALGORITHM:
** Merge-sort.
*/
/*
** Return a pointer to the next structure in the linked list.
*/
#define NEXT(A) (*(char **)(((char *)A) + offset))
/*
** Inputs:
** a: A sorted, null-terminated linked list. (May be null).
** b: A sorted, null-terminated linked list. (May be null).
** cmp: A pointer to the comparison function.
** offset: Offset in the structure to the "next" field.
**
** Return Value:
** A pointer to the head of a sorted list containing the elements
** of both a and b.
**
** Side effects:
** The "next" pointers for elements in the lists a and b are
** changed.
*/
static char *merge(char *a, char *b, int (*cmp)(const char *, const char *),
int offset) {
char *ptr, *head;
if (a == 0) {
head = b;
} else if (b == 0) {
head = a;
} else {
if ((*cmp)(a, b) <= 0) {
ptr = a;
a = NEXT(a);
} else {
ptr = b;
b = NEXT(b);
}
head = ptr;
while (a && b) {
if ((*cmp)(a, b) <= 0) {
NEXT(ptr) = a;
ptr = a;
a = NEXT(a);
} else {
NEXT(ptr) = b;
ptr = b;
b = NEXT(b);
}
}
if (a)
NEXT(ptr) = a;
else
NEXT(ptr) = b;
}
return head;
}
/*
** Inputs:
** list: Pointer to a singly-linked list of structures.
** next: Pointer to pointer to the second element of the list.
** cmp: A comparison function.
**
** Return Value:
** A pointer to the head of a sorted list containing the elements
** orginally in list.
**
** Side effects:
** The "next" pointers for elements in list are changed.
*/
#define LISTSIZE 30
static char *msort(char *list, char **next,
int (*cmp)(const char *, const char *)) {
unsigned long offset;
char *ep;
char *set[LISTSIZE];
int i;
offset = (unsigned long)((char *)next - (char *)list);
for (i = 0; i < LISTSIZE; i++) set[i] = 0;
while (list) {
ep = list;
list = NEXT(list);
NEXT(ep) = 0;
for (i = 0; i < LISTSIZE - 1 && set[i] != 0; i++) {
ep = merge(ep, set[i], cmp, offset);
set[i] = 0;
}
set[i] = ep;
}
ep = 0;
for (i = 0; i < LISTSIZE; i++)
if (set[i]) ep = merge(set[i], ep, cmp, offset);
return ep;
}
/************************ From the file "option.c" **************************/
static char **lemon_argv;
static struct s_options *op;
static FILE *errstream;
#define ISOPT(X) ((X)[0] == '-' || (X)[0] == '+' || strchr((X), '=') != 0)
/*
** Print the command line with a carrot pointing to the k-th character
** of the n-th field.
*/
static void errline(int n, int k, FILE *err) {
int spcnt, i;
if (lemon_argv[0]) fprintf(err, "%s", lemon_argv[0]);
spcnt = lemonStrlen(lemon_argv[0]) + 1;
for (i = 1; i < n && lemon_argv[i]; i++) {
fprintf(err, " %s", lemon_argv[i]);
spcnt += lemonStrlen(lemon_argv[i]) + 1;
}
spcnt += k;
for (; lemon_argv[i]; i++) fprintf(err, " %s", lemon_argv[i]);
if (spcnt < 20) {
fprintf(err, "\n%*s^-- here\n", spcnt, "");
} else {
fprintf(err, "\n%*shere --^\n", spcnt - 7, "");
}
}
/*
** Return the index of the N-th non-switch argument. Return -1
** if N is out of range.
*/
static int argindex(int n) {
int i;
int dashdash = 0;
if (lemon_argv != 0 && *lemon_argv != 0) {
for (i = 1; lemon_argv[i]; i++) {
if (dashdash || !ISOPT(lemon_argv[i])) {
if (n == 0) return i;
n--;
}
if (strcmp(lemon_argv[i], "--") == 0) dashdash = 1;
}
}
return -1;
}
static const char emsg[] = "Command line syntax error: ";
/*
** Process a flag command line argument.
*/
static int handleflags(int i, FILE *err) {
int v;
int errcnt = 0;
int j;
for (j = 0; op[j].label; j++) {
if (strncmp(&lemon_argv[i][1], op[j].label, lemonStrlen(op[j].label)) == 0)
break;
}
v = lemon_argv[i][0] == '-' ? 1 : 0;
if (op[j].label == 0) {
if (err) {
fprintf(err, "%sundefined option.\n", emsg);
errline(i, 1, err);
}
errcnt++;
} else if (op[j].arg == 0) {
/* Ignore this option */
} else if (op[j].type == OPT_FLAG) {
*((int *)op[j].arg) = v;
} else if (op[j].type == OPT_FFLAG) {
(*(void (*)(int))(op[j].arg))(v);
} else if (op[j].type == OPT_FSTR) {
(*(void (*)(char *))(op[j].arg))(&lemon_argv[i][2]);
} else {
if (err) {
fprintf(err, "%smissing argument on switch.\n", emsg);
errline(i, 1, err);
}
errcnt++;
}
return errcnt;
}
/*
** Process a command line switch which has an argument.
*/
static int handleswitch(int i, FILE *err) {
int lv = 0;
double dv = 0.0;
char *sv = 0, *end;
char *cp;
int j;
int errcnt = 0;
cp = strchr(lemon_argv[i], '=');
assert(cp != 0);
*cp = 0;
for (j = 0; op[j].label; j++) {
if (strcmp(lemon_argv[i], op[j].label) == 0) break;
}
*cp = '=';
if (op[j].label == 0) {
if (err) {
fprintf(err, "%sundefined option.\n", emsg);
errline(i, 0, err);
}
errcnt++;
} else {
cp++;
switch (op[j].type) {
case OPT_FLAG:
case OPT_FFLAG:
if (err) {
fprintf(err, "%soption requires an argument.\n", emsg);
errline(i, 0, err);
}
errcnt++;
break;
case OPT_DBL:
case OPT_FDBL:
dv = strtod(cp, &end);
if (*end) {
if (err) {
fprintf(err, "%sillegal character in floating-point argument.\n",
emsg);
errline(i, (int)((char *)end - (char *)lemon_argv[i]), err);
}
errcnt++;
}
break;
case OPT_INT:
case OPT_FINT:
lv = strtol(cp, &end, 0);
if (*end) {
if (err) {
fprintf(err, "%sillegal character in integer argument.\n", emsg);
errline(i, (int)((char *)end - (char *)lemon_argv[i]), err);
}
errcnt++;
}
break;
case OPT_STR:
case OPT_FSTR:
sv = cp;
break;
}
switch (op[j].type) {
case OPT_FLAG:
case OPT_FFLAG:
break;
case OPT_DBL:
*(double *)(op[j].arg) = dv;
break;
case OPT_FDBL:
(*(void (*)(double))(op[j].arg))(dv);
break;
case OPT_INT:
*(int *)(op[j].arg) = lv;
break;
case OPT_FINT:
(*(void (*)(int))(op[j].arg))((int)lv);
break;
case OPT_STR:
*(char **)(op[j].arg) = sv;
break;
case OPT_FSTR:
(*(void (*)(char *))(op[j].arg))(sv);
break;
}
}
return errcnt;
}
int OptInit(char **a, struct s_options *o, FILE *err) {
int errcnt = 0;
lemon_argv = a;
op = o;
errstream = err;
if (lemon_argv && *lemon_argv && op) {
int i;
for (i = 1; lemon_argv[i]; i++) {
if (lemon_argv[i][0] == '+' || lemon_argv[i][0] == '-') {
errcnt += handleflags(i, err);
} else if (strchr(lemon_argv[i], '=')) {
errcnt += handleswitch(i, err);
}
}
}
if (errcnt > 0) {
fprintf(err, "Valid command line options for \"%s\" are:\n", *a);
OptPrint();
exit(1);
}
return 0;
}
int OptNArgs(void) {
int cnt = 0;
int dashdash = 0;
int i;
if (lemon_argv != 0 && lemon_argv[0] != 0) {
for (i = 1; lemon_argv[i]; i++) {
if (dashdash || !ISOPT(lemon_argv[i])) cnt++;
if (strcmp(lemon_argv[i], "--") == 0) dashdash = 1;
}
}
return cnt;
}
char *OptArg(int n) {
int i;
i = argindex(n);
return i >= 0 ? lemon_argv[i] : 0;
}
void OptErr(int n) {
int i;
i = argindex(n);
if (i >= 0) errline(i, 0, errstream);
}
void OptPrint(void) {
int i;
int max, len;
max = 0;
for (i = 0; op[i].label; i++) {
len = lemonStrlen(op[i].label) + 1;
switch (op[i].type) {
case OPT_FLAG:
case OPT_FFLAG:
break;
case OPT_INT:
case OPT_FINT:
len += 9; /* length of "<integer>" */
break;
case OPT_DBL:
case OPT_FDBL:
len += 6; /* length of "<real>" */
break;
case OPT_STR:
case OPT_FSTR:
len += 8; /* length of "<string>" */
break;
}
if (len > max) max = len;
}
for (i = 0; op[i].label; i++) {
switch (op[i].type) {
case OPT_FLAG:
case OPT_FFLAG:
fprintf(errstream, " -%-*s %s\n", max, op[i].label, op[i].message);
break;
case OPT_INT:
case OPT_FINT:
fprintf(errstream, " -%s<integer>%*s %s\n", op[i].label,
(int)(max - lemonStrlen(op[i].label) - 9), "", op[i].message);
break;
case OPT_DBL:
case OPT_FDBL:
fprintf(errstream, " -%s<real>%*s %s\n", op[i].label,
(int)(max - lemonStrlen(op[i].label) - 6), "", op[i].message);
break;
case OPT_STR:
case OPT_FSTR:
fprintf(errstream, " -%s<string>%*s %s\n", op[i].label,
(int)(max - lemonStrlen(op[i].label) - 8), "", op[i].message);
break;
}
}
}
/*********************** From the file "parse.c" ****************************/
/*
** Input file parser for the LEMON parser generator.
*/
/* The state of the parser */
enum e_state {
INITIALIZE,
WAITING_FOR_DECL_OR_RULE,
WAITING_FOR_DECL_KEYWORD,
WAITING_FOR_DECL_ARG,
WAITING_FOR_PRECEDENCE_SYMBOL,
WAITING_FOR_ARROW,
IN_RHS,
LHS_ALIAS_1,
LHS_ALIAS_2,
LHS_ALIAS_3,
RHS_ALIAS_1,
RHS_ALIAS_2,
PRECEDENCE_MARK_1,
PRECEDENCE_MARK_2,
RESYNC_AFTER_RULE_ERROR,
RESYNC_AFTER_DECL_ERROR,
WAITING_FOR_DESTRUCTOR_SYMBOL,
WAITING_FOR_DATATYPE_SYMBOL,
WAITING_FOR_FALLBACK_ID,
WAITING_FOR_WILDCARD_ID,
WAITING_FOR_CLASS_ID,
WAITING_FOR_CLASS_TOKEN,
WAITING_FOR_TOKEN_NAME
};
struct pstate {
char *filename; /* Name of the input file */
int tokenlineno; /* Linenumber at which current token starts */
int errorcnt; /* Number of errors so far */
char *tokenstart; /* Text of current token */
struct lemon *gp; /* Global state vector */
enum e_state state; /* The state of the parser */
struct symbol *fallback; /* The fallback token */
struct symbol *tkclass; /* Token class symbol */
struct symbol *lhs; /* Left-hand side of current rule */
const char *lhsalias; /* Alias for the LHS */
int nrhs; /* Number of right-hand side symbols seen */
struct symbol *rhs[MAXRHS]; /* RHS symbols */
const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
struct rule *prevrule; /* Previous rule parsed */
const char *declkeyword; /* Keyword of a declaration */
char **declargslot; /* Where the declaration argument should be put */
int insertLineMacro; /* Add #line before declaration insert */
int *decllinenoslot; /* Where to write declaration line number */
enum e_assoc declassoc; /* Assign this association to decl arguments */
int preccounter; /* Assign this precedence to decl arguments */
struct rule *firstrule; /* Pointer to first rule in the grammar */
struct rule *lastrule; /* Pointer to the most recently parsed rule */
};
/* Parse a single token */
static void parseonetoken(struct pstate *psp) {
const char *x;
x = Strsafe(psp->tokenstart); /* Save the token permanently */
#if 0
printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
x,psp->state);
#endif
switch (psp->state) {
case INITIALIZE:
psp->prevrule = 0;
psp->preccounter = 0;
psp->firstrule = psp->lastrule = 0;
psp->gp->nrule = 0;
/* fall through */
case WAITING_FOR_DECL_OR_RULE:
if (x[0] == '%') {
psp->state = WAITING_FOR_DECL_KEYWORD;
} else if (ISLOWER(x[0])) {
psp->lhs = Symbol_new(x);
psp->nrhs = 0;
psp->lhsalias = 0;
psp->state = WAITING_FOR_ARROW;
} else if (x[0] == '{') {
if (psp->prevrule == 0) {
ErrorMsg(psp->filename, psp->tokenlineno,
"There is no prior rule upon which to attach the code "
"fragment which begins on this line.");
psp->errorcnt++;
} else if (psp->prevrule->code != 0) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Code fragment beginning on this line is not the first "
"to follow the previous rule.");
psp->errorcnt++;
} else if (strcmp(x, "{NEVER-REDUCE") == 0) {
psp->prevrule->neverReduce = 1;
} else {
psp->prevrule->line = psp->tokenlineno;
psp->prevrule->code = &x[1];
psp->prevrule->noCode = 0;
}
} else if (x[0] == '[') {
psp->state = PRECEDENCE_MARK_1;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Token \"%s\" should be either \"%%\" or a nonterminal name.",
x);
psp->errorcnt++;
}
break;
case PRECEDENCE_MARK_1:
if (!ISUPPER(x[0])) {
ErrorMsg(psp->filename, psp->tokenlineno,
"The precedence symbol must be a terminal.");
psp->errorcnt++;
} else if (psp->prevrule == 0) {
ErrorMsg(psp->filename, psp->tokenlineno,
"There is no prior rule to assign precedence \"[%s]\".", x);
psp->errorcnt++;
} else if (psp->prevrule->precsym != 0) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Precedence mark on this line is not the first "
"to follow the previous rule.");
psp->errorcnt++;
} else {
psp->prevrule->precsym = Symbol_new(x);
}
psp->state = PRECEDENCE_MARK_2;
break;
case PRECEDENCE_MARK_2:
if (x[0] != ']') {
ErrorMsg(psp->filename, psp->tokenlineno,
"Missing \"]\" on precedence mark.");
psp->errorcnt++;
}
psp->state = WAITING_FOR_DECL_OR_RULE;
break;
case WAITING_FOR_ARROW:
if (x[0] == ':' && x[1] == ':' && x[2] == '=') {
psp->state = IN_RHS;
} else if (x[0] == '(') {
psp->state = LHS_ALIAS_1;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Expected to see a \":\" following the LHS symbol \"%s\".",
psp->lhs->name);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case LHS_ALIAS_1:
if (ISALPHA(x[0])) {
psp->lhsalias = x;
psp->state = LHS_ALIAS_2;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"\"%s\" is not a valid alias for the LHS \"%s\"\n", x,
psp->lhs->name);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case LHS_ALIAS_2:
if (x[0] == ')') {
psp->state = LHS_ALIAS_3;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Missing \")\" following LHS alias name \"%s\".",
psp->lhsalias);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case LHS_ALIAS_3:
if (x[0] == ':' && x[1] == ':' && x[2] == '=') {
psp->state = IN_RHS;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Missing \"->\" following: \"%s(%s)\".", psp->lhs->name,
psp->lhsalias);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case IN_RHS:
if (x[0] == '.') {
struct rule *rp;
rp = (struct rule *)calloc(sizeof(struct rule) +
sizeof(struct symbol *) * psp->nrhs +
sizeof(char *) * psp->nrhs,
1);
if (rp == 0) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Can't allocate enough memory for this rule.");
psp->errorcnt++;
psp->prevrule = 0;
} else {
int i;
rp->ruleline = psp->tokenlineno;
rp->rhs = (struct symbol **)&rp[1];
rp->rhsalias = (const char **)&(rp->rhs[psp->nrhs]);
for (i = 0; i < psp->nrhs; i++) {
rp->rhs[i] = psp->rhs[i];
rp->rhsalias[i] = psp->alias[i];
if (rp->rhsalias[i] != 0) {
rp->rhs[i]->bContent = 1;
}
}
rp->lhs = psp->lhs;
rp->lhsalias = psp->lhsalias;
rp->nrhs = psp->nrhs;
rp->code = 0;
rp->noCode = 1;
rp->precsym = 0;
rp->index = psp->gp->nrule++;
rp->nextlhs = rp->lhs->rule;
rp->lhs->rule = rp;
rp->next = 0;
if (psp->firstrule == 0) {
psp->firstrule = psp->lastrule = rp;
} else {
psp->lastrule->next = rp;
psp->lastrule = rp;
}
psp->prevrule = rp;
}
psp->state = WAITING_FOR_DECL_OR_RULE;
} else if (ISALPHA(x[0])) {
if (psp->nrhs >= MAXRHS) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Too many symbols on RHS of rule beginning at \"%s\".", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
} else {
psp->rhs[psp->nrhs] = Symbol_new(x);
psp->alias[psp->nrhs] = 0;
psp->nrhs++;
}
} else if ((x[0] == '|' || x[0] == '/') && psp->nrhs > 0 &&
ISUPPER(x[1])) {
struct symbol *msp = psp->rhs[psp->nrhs - 1];
if (msp->type != MULTITERMINAL) {
struct symbol *origsp = msp;
msp = (struct symbol *)calloc(1, sizeof(*msp));
memset(msp, 0, sizeof(*msp));
msp->type = MULTITERMINAL;
msp->nsubsym = 1;
msp->subsym = (struct symbol **)calloc(1, sizeof(struct symbol *));
msp->subsym[0] = origsp;
msp->name = origsp->name;
psp->rhs[psp->nrhs - 1] = msp;
}
msp->nsubsym++;
msp->subsym = (struct symbol **)realloc(
msp->subsym, sizeof(struct symbol *) * msp->nsubsym);
msp->subsym[msp->nsubsym - 1] = Symbol_new(&x[1]);
if (ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0])) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Cannot form a compound containing a non-terminal");
psp->errorcnt++;
}
} else if (x[0] == '(' && psp->nrhs > 0) {
psp->state = RHS_ALIAS_1;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Illegal character on RHS of rule: \"%s\".", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case RHS_ALIAS_1:
if (ISALPHA(x[0])) {
psp->alias[psp->nrhs - 1] = x;
psp->state = RHS_ALIAS_2;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", x,
psp->rhs[psp->nrhs - 1]->name);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case RHS_ALIAS_2:
if (x[0] == ')') {
psp->state = IN_RHS;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Missing \")\" following LHS alias name \"%s\".",
psp->lhsalias);
psp->errorcnt++;
psp->state = RESYNC_AFTER_RULE_ERROR;
}
break;
case WAITING_FOR_DECL_KEYWORD:
if (ISALPHA(x[0])) {
psp->declkeyword = x;
psp->declargslot = 0;
psp->decllinenoslot = 0;
psp->insertLineMacro = 1;
psp->state = WAITING_FOR_DECL_ARG;
if (strcmp(x, "name") == 0) {
psp->declargslot = &(psp->gp->name);
psp->insertLineMacro = 0;
} else if (strcmp(x, "include") == 0) {
psp->declargslot = &(psp->gp->include);
} else if (strcmp(x, "code") == 0) {
psp->declargslot = &(psp->gp->extracode);
} else if (strcmp(x, "token_destructor") == 0) {
psp->declargslot = &psp->gp->tokendest;
} else if (strcmp(x, "default_destructor") == 0) {
psp->declargslot = &psp->gp->vardest;
} else if (strcmp(x, "token_prefix") == 0) {
psp->declargslot = &psp->gp->tokenprefix;
psp->insertLineMacro = 0;
} else if (strcmp(x, "syntax_error") == 0) {
psp->declargslot = &(psp->gp->error);
} else if (strcmp(x, "parse_accept") == 0) {
psp->declargslot = &(psp->gp->accept);
} else if (strcmp(x, "parse_failure") == 0) {
psp->declargslot = &(psp->gp->failure);
} else if (strcmp(x, "stack_overflow") == 0) {
psp->declargslot = &(psp->gp->overflow);
} else if (strcmp(x, "extra_argument") == 0) {
psp->declargslot = &(psp->gp->arg);
psp->insertLineMacro = 0;
} else if (strcmp(x, "extra_context") == 0) {
psp->declargslot = &(psp->gp->ctx);
psp->insertLineMacro = 0;
} else if (strcmp(x, "token_type") == 0) {
psp->declargslot = &(psp->gp->tokentype);
psp->insertLineMacro = 0;
} else if (strcmp(x, "default_type") == 0) {
psp->declargslot = &(psp->gp->vartype);
psp->insertLineMacro = 0;
} else if (strcmp(x, "stack_size") == 0) {
psp->declargslot = &(psp->gp->stacksize);
psp->insertLineMacro = 0;
} else if (strcmp(x, "start_symbol") == 0) {
psp->declargslot = &(psp->gp->start);
psp->insertLineMacro = 0;
} else if (strcmp(x, "left") == 0) {
psp->preccounter++;
psp->declassoc = LEFT;
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
} else if (strcmp(x, "right") == 0) {
psp->preccounter++;
psp->declassoc = RIGHT;
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
} else if (strcmp(x, "nonassoc") == 0) {
psp->preccounter++;
psp->declassoc = NONE;
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
} else if (strcmp(x, "destructor") == 0) {
psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
} else if (strcmp(x, "type") == 0) {
psp->state = WAITING_FOR_DATATYPE_SYMBOL;
} else if (strcmp(x, "fallback") == 0) {
psp->fallback = 0;
psp->state = WAITING_FOR_FALLBACK_ID;
} else if (strcmp(x, "token") == 0) {
psp->state = WAITING_FOR_TOKEN_NAME;
} else if (strcmp(x, "wildcard") == 0) {
psp->state = WAITING_FOR_WILDCARD_ID;
} else if (strcmp(x, "token_class") == 0) {
psp->state = WAITING_FOR_CLASS_ID;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Unknown declaration keyword: \"%%%s\".", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Illegal declaration keyword: \"%s\".", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}
break;
case WAITING_FOR_DESTRUCTOR_SYMBOL:
if (!ISALPHA(x[0])) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Symbol name missing after %%destructor keyword");
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
} else {
struct symbol *sp = Symbol_new(x);
psp->declargslot = &sp->destructor;
psp->decllinenoslot = &sp->destLineno;
psp->insertLineMacro = 1;
psp->state = WAITING_FOR_DECL_ARG;
}
break;
case WAITING_FOR_DATATYPE_SYMBOL:
if (!ISALPHA(x[0])) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Symbol name missing after %%type keyword");
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
} else {
struct symbol *sp = Symbol_find(x);
if ((sp) && (sp->datatype)) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Symbol %%type \"%s\" already defined", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
} else {
if (!sp) {
sp = Symbol_new(x);
}
psp->declargslot = &sp->datatype;
psp->insertLineMacro = 0;
psp->state = WAITING_FOR_DECL_ARG;
}
}
break;
case WAITING_FOR_PRECEDENCE_SYMBOL:
if (x[0] == '.') {
psp->state = WAITING_FOR_DECL_OR_RULE;
} else if (ISUPPER(x[0])) {
struct symbol *sp;
sp = Symbol_new(x);
if (sp->prec >= 0) {
ErrorMsg(psp->filename, psp->tokenlineno,
"Symbol \"%s\" has already be given a precedence.", x);
psp->errorcnt++;
} else {
sp->prec = psp->preccounter;
sp->assoc = psp->declassoc;
}
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Can't assign a precedence to \"%s\".", x);
psp->errorcnt++;
}
break;
case WAITING_FOR_DECL_ARG:
if (x[0] == '{' || x[0] == '\"' || ISALNUM(x[0])) {
const char *zOld, *zNew;
char *zBuf, *z;
int nOld, n, nLine = 0, nNew, nBack;
int addLineMacro;
char zLine[50];
zNew = x;
if (zNew[0] == '"' || zNew[0] == '{') zNew++;
nNew = lemonStrlen(zNew);
if (*psp->declargslot) {
zOld = *psp->declargslot;
} else {
zOld = "";
}
nOld = lemonStrlen(zOld);
n = nOld + nNew + 20;
addLineMacro =
!psp->gp->nolinenosflag && psp->insertLineMacro &&
psp->tokenlineno > 1 &&
(psp->decllinenoslot == 0 || psp->decllinenoslot[0] != 0);
if (addLineMacro) {
for (z = psp->filename, nBack = 0; *z; z++) {
if (*z == '\\') nBack++;
}
lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
nLine = lemonStrlen(zLine);
n += nLine + lemonStrlen(psp->filename) + nBack;
}
*psp->declargslot = (char *)realloc(*psp->declargslot, n);
zBuf = *psp->declargslot + nOld;
if (addLineMacro) {
if (nOld && zBuf[-1] != '\n') {
*(zBuf++) = '\n';
}
memcpy(zBuf, zLine, nLine);
zBuf += nLine;
*(zBuf++) = '"';
for (z = psp->filename; *z; z++) {
if (*z == '\\') {
*(zBuf++) = '\\';
}
*(zBuf++) = *z;
}
*(zBuf++) = '"';
*(zBuf++) = '\n';
}
if (psp->decllinenoslot && psp->decllinenoslot[0] == 0) {
psp->decllinenoslot[0] = psp->tokenlineno;
}
memcpy(zBuf, zNew, nNew);
zBuf += nNew;
*zBuf = 0;
psp->state = WAITING_FOR_DECL_OR_RULE;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Illegal argument to %%%s: %s", psp->declkeyword, x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}
break;
case WAITING_FOR_FALLBACK_ID:
if (x[0] == '.') {
psp->state = WAITING_FOR_DECL_OR_RULE;
} else if (!ISUPPER(x[0])) {
ErrorMsg(psp->filename, psp->tokenlineno,
"%%fallback argument \"%s\" should be a token", x);
psp->errorcnt++;
} else {
struct symbol *sp = Symbol_new(x);
if (psp->fallback == 0) {
psp->fallback = sp;
} else if (sp->fallback) {
ErrorMsg(psp->filename, psp->tokenlineno,
"More than one fallback assigned to token %s", x);
psp->errorcnt++;
} else {
sp->fallback = psp->fallback;
psp->gp->has_fallback = 1;
}
}
break;
case WAITING_FOR_TOKEN_NAME:
/* Tokens do not have to be declared before use. But they can be
** in order to control their assigned integer number. The number for
** each token is assigned when it is first seen. So by including
**
** %token ONE TWO THREE
**
** early in the grammar file, that assigns small consecutive values
** to each of the tokens ONE TWO and THREE.
*/
if (x[0] == '.') {
psp->state = WAITING_FOR_DECL_OR_RULE;
} else if (!ISUPPER(x[0])) {
ErrorMsg(psp->filename, psp->tokenlineno,
"%%token argument \"%s\" should be a token", x);
psp->errorcnt++;
} else {
(void)Symbol_new(x);
}
break;
case WAITING_FOR_WILDCARD_ID:
if (x[0] == '.') {
psp->state = WAITING_FOR_DECL_OR_RULE;
} else if (!ISUPPER(x[0])) {
ErrorMsg(psp->filename, psp->tokenlineno,
"%%wildcard argument \"%s\" should be a token", x);
psp->errorcnt++;
} else {
struct symbol *sp = Symbol_new(x);
if (psp->gp->wildcard == 0) {
psp->gp->wildcard = sp;
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"Extra wildcard to token: %s", x);
psp->errorcnt++;
}
}
break;
case WAITING_FOR_CLASS_ID:
if (!ISLOWER(x[0])) {
ErrorMsg(psp->filename, psp->tokenlineno,
"%%token_class must be followed by an identifier: %s", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
} else if (Symbol_find(x)) {
ErrorMsg(psp->filename, psp->tokenlineno, "Symbol \"%s\" already used",
x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
} else {
psp->tkclass = Symbol_new(x);
psp->tkclass->type = MULTITERMINAL;
psp->state = WAITING_FOR_CLASS_TOKEN;
}
break;
case WAITING_FOR_CLASS_TOKEN:
if (x[0] == '.') {
psp->state = WAITING_FOR_DECL_OR_RULE;
} else if (ISUPPER(x[0]) ||
((x[0] == '|' || x[0] == '/') && ISUPPER(x[1]))) {
struct symbol *msp = psp->tkclass;
msp->nsubsym++;
msp->subsym = (struct symbol **)realloc(
msp->subsym, sizeof(struct symbol *) * msp->nsubsym);
if (!ISUPPER(x[0])) x++;
msp->subsym[msp->nsubsym - 1] = Symbol_new(x);
} else {
ErrorMsg(psp->filename, psp->tokenlineno,
"%%token_class argument \"%s\" should be a token", x);
psp->errorcnt++;
psp->state = RESYNC_AFTER_DECL_ERROR;
}
break;
case RESYNC_AFTER_RULE_ERROR:
/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
** break; */
case RESYNC_AFTER_DECL_ERROR:
if (x[0] == '.') psp->state = WAITING_FOR_DECL_OR_RULE;
if (x[0] == '%') psp->state = WAITING_FOR_DECL_KEYWORD;
break;
}
}
/* The text in the input is part of the argument to an %ifdef or %ifndef.
** Evaluate the text as a boolean expression. Return true or false.
*/
static int eval_preprocessor_boolean(char *z, int lineno) {
int neg = 0;
int res = 0;
int okTerm = 1;
int i;
for (i = 0; z[i] != 0; i++) {
if (ISSPACE(z[i])) continue;
if (z[i] == '!') {
if (!okTerm) goto pp_syntax_error;
neg = !neg;
continue;
}
if (z[i] == '|' && z[i + 1] == '|') {
if (okTerm) goto pp_syntax_error;
if (res) return 1;
i++;
okTerm = 1;
continue;
}
if (z[i] == '&' && z[i + 1] == '&') {
if (okTerm) goto pp_syntax_error;
if (!res) return 0;
i++;
okTerm = 1;
continue;
}
if (z[i] == '(') {
int k;
int n = 1;
if (!okTerm) goto pp_syntax_error;
for (k = i + 1; z[k]; k++) {
if (z[k] == ')') {
n--;
if (n == 0) {
z[k] = 0;
res = eval_preprocessor_boolean(&z[i + 1], -1);
z[k] = ')';
if (res < 0) {
i = i - res;
goto pp_syntax_error;
}
i = k;
break;
}
} else if (z[k] == '(') {
n++;
} else if (z[k] == 0) {
i = k;
goto pp_syntax_error;
}
}
if (neg) {
res = !res;
neg = 0;
}
okTerm = 0;
continue;
}
if (ISALPHA(z[i])) {
int j, k, n;
if (!okTerm) goto pp_syntax_error;
for (k = i + 1; ISALNUM(z[k]) || z[k] == '_'; k++) {
}
n = k - i;
res = 0;
for (j = 0; j < nDefine; j++) {
if (strncmp(azDefine[j], &z[i], n) == 0 && azDefine[j][n] == 0) {
res = 1;
break;
}
}
i = k - 1;
if (neg) {
res = !res;
neg = 0;
}
okTerm = 0;
continue;
}
goto pp_syntax_error;
}
return res;
pp_syntax_error:
if (lineno > 0) {
fprintf(stderr, "%%if syntax error on line %d.\n", lineno);
fprintf(stderr, " %.*s <-- syntax error here\n", i + 1, z);
exit(1);
} else {
return -(i + 1);
}
}
/* Run the preprocessor over the input file text. The global variables
** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
** comments them out. Text in between is also commented out as appropriate.
*/
static void preprocess_input(char *z) {
int i, j, k;
int exclude = 0;
int start = 0;
int lineno = 1;
int start_lineno = 1;
for (i = 0; z[i]; i++) {
if (z[i] == '\n') lineno++;
if (z[i] != '%' || (i > 0 && z[i - 1] != '\n')) continue;
if (strncmp(&z[i], "%endif", 6) == 0 && ISSPACE(z[i + 6])) {
if (exclude) {
exclude--;
if (exclude == 0) {
for (j = start; j < i; j++)
if (z[j] != '\n') z[j] = ' ';
}
}
for (j = i; z[j] && z[j] != '\n'; j++) z[j] = ' ';
} else if (strncmp(&z[i], "%else", 5) == 0 && ISSPACE(z[i + 5])) {
if (exclude == 1) {
exclude = 0;
for (j = start; j < i; j++)
if (z[j] != '\n') z[j] = ' ';
} else if (exclude == 0) {
exclude = 1;
start = i;
start_lineno = lineno;
}
for (j = i; z[j] && z[j] != '\n'; j++) z[j] = ' ';
} else if (strncmp(&z[i], "%ifdef ", 7) == 0 ||
strncmp(&z[i], "%if ", 4) == 0 ||
strncmp(&z[i], "%ifndef ", 8) == 0) {
if (exclude) {
exclude++;
} else {
int isNot;
int iBool;
for (j = i; z[j] && !ISSPACE(z[j]); j++) {
}
iBool = j;
isNot = (j == i + 7);
while (z[j] && z[j] != '\n') {
j++;
}
k = z[j];
z[j] = 0;
exclude = eval_preprocessor_boolean(&z[iBool], lineno);
z[j] = k;
if (!isNot) exclude = !exclude;
if (exclude) {
start = i;
start_lineno = lineno;
}
}
for (j = i; z[j] && z[j] != '\n'; j++) z[j] = ' ';
}
}
if (exclude) {
fprintf(stderr, "unterminated %%ifdef starting on line %d\n", start_lineno);
exit(1);
}
}
/* In spite of its name, this function is really a scanner. It read
** in the entire input file (all at once) then tokenizes it. Each
** token is passed to the function "parseonetoken" which builds all
** the appropriate data structures in the global state vector "gp".
*/
void Parse(struct lemon *gp) {
struct pstate *ps;
FILE *fp;
char *filebuf;
unsigned int filesize;
int lineno;
int c;
char *cp, *nextcp;
int startline = 0;
ps = gc(xcalloc(1, sizeof(struct pstate)));
ps->gp = gp;
ps->filename = gp->filename;
ps->errorcnt = 0;
ps->state = INITIALIZE;
/* Begin by reading the input file */
fp = fopen(ps->filename, "rb");
if (fp == 0) {
ErrorMsg(ps->filename, 0, "Can't open this file for reading.");
gp->errorcnt++;
return;
}
fseek(fp, 0, 2);
filesize = ftell(fp);
rewind(fp);
filebuf = (char *)malloc(filesize + 1);
if (filesize > 100000000 || filebuf == 0) {
ErrorMsg(ps->filename, 0, "Input file too large.");
free(filebuf);
gp->errorcnt++;
fclose(fp);
return;
}
if (fread(filebuf, 1, filesize, fp) != filesize) {
ErrorMsg(ps->filename, 0, "Can't read in all %d bytes of this file.",
filesize);
free(filebuf);
gp->errorcnt++;
fclose(fp);
return;
}
fclose(fp);
filebuf[filesize] = 0;
/* Make an initial pass through the file to handle %ifdef and %ifndef */
preprocess_input(filebuf);
if (gp->printPreprocessed) {
printf("%s\n", filebuf);
return;
}
/* Now scan the text of the input file */
lineno = 1;
for (cp = filebuf; (c = *cp) != 0;) {
if (c == '\n') lineno++; /* Keep track of the line number */
if (ISSPACE(c)) {
cp++;
continue;
} /* Skip all white space */
if (c == '/' && cp[1] == '/') { /* Skip C++ style comments */
cp += 2;
while ((c = *cp) != 0 && c != '\n') cp++;
continue;
}
if (c == '/' && cp[1] == '*') { /* Skip C style comments */
cp += 2;
while ((c = *cp) != 0 && (c != '/' || cp[-1] != '*')) {
if (c == '\n') lineno++;
cp++;
}
if (c) cp++;
continue;
}
ps->tokenstart = cp; /* Mark the beginning of the token */
ps->tokenlineno = lineno; /* Linenumber on which token begins */
if (c == '\"') { /* String literals */
cp++;
while ((c = *cp) != 0 && c != '\"') {
if (c == '\n') lineno++;
cp++;
}
if (c == 0) {
ErrorMsg(ps->filename, startline,
"String starting on this line is not terminated before "
"the end of the file.");
ps->errorcnt++;
nextcp = cp;
} else {
nextcp = cp + 1;
}
} else if (c == '{') { /* A block of C code */
int level;
cp++;
for (level = 1; (c = *cp) != 0 && (level > 1 || c != '}'); cp++) {
if (c == '\n')
lineno++;
else if (c == '{')
level++;
else if (c == '}')
level--;
else if (c == '/' && cp[1] == '*') { /* Skip comments */
int prevc;
cp = &cp[2];
prevc = 0;
while ((c = *cp) != 0 && (c != '/' || prevc != '*')) {
if (c == '\n') lineno++;
prevc = c;
cp++;
}
} else if (c == '/' && cp[1] == '/') { /* Skip C++ style comments too */
cp = &cp[2];
while ((c = *cp) != 0 && c != '\n') cp++;
if (c) lineno++;
} else if (c == '\'' || c == '\"') { /* String a character literals */
int startchar, prevc;
startchar = c;
prevc = 0;
for (cp++; (c = *cp) != 0 && (c != startchar || prevc == '\\');
cp++) {
if (c == '\n') lineno++;
if (prevc == '\\')
prevc = 0;
else
prevc = c;
}
}
}
if (c == 0) {
ErrorMsg(ps->filename, ps->tokenlineno,
"C code starting on this line is not terminated before "
"the end of the file.");
ps->errorcnt++;
nextcp = cp;
} else {
nextcp = cp + 1;
}
} else if (ISALNUM(c)) { /* Identifiers */
while ((c = *cp) != 0 && (ISALNUM(c) || c == '_')) cp++;
nextcp = cp;
} else if (c == ':' && cp[1] == ':' &&
cp[2] == '=') { /* The operator "::=" */
cp += 3;
nextcp = cp;
} else if ((c == '/' || c == '|') && ISALPHA(cp[1])) {
cp += 2;
while ((c = *cp) != 0 && (ISALNUM(c) || c == '_')) cp++;
nextcp = cp;
} else { /* All other (one character) operators */
cp++;
nextcp = cp;
}
c = *cp;
*cp = 0; /* Null terminate the token */
parseonetoken(ps); /* Parse the token */
*cp = (char)c; /* Restore the buffer */
cp = nextcp;
}
free(filebuf); /* Release the buffer after parsing */
gp->rule = ps->firstrule;
gp->errorcnt = ps->errorcnt;
}
/*************************** From the file "plink.c" *********************/
/*
** Routines processing configuration follow-set propagation links
** in the LEMON parser generator.
*/
static struct plink *plink_freelist = 0;
/* Allocate a new plink */
struct plink *Plink_new(void) {
struct plink *newlink;
if (plink_freelist == 0) {
int i;
int amt = 100;
plink_freelist = (struct plink *)calloc(amt, sizeof(struct plink));
if (plink_freelist == 0) {
fprintf(
stderr,
"Unable to allocate memory for a new follow-set propagation link.\n");
exit(1);
}
for (i = 0; i < amt - 1; i++)
plink_freelist[i].next = &plink_freelist[i + 1];
plink_freelist[amt - 1].next = 0;
}
newlink = plink_freelist;
plink_freelist = plink_freelist->next;
return newlink;
}
/* Add a plink to a plink list */
void Plink_add(struct plink **plpp, struct config *cfp) {
struct plink *newlink;
newlink = Plink_new();
newlink->next = *plpp;
*plpp = newlink;
newlink->cfp = cfp;
}
/* Transfer every plink on the list "from" to the list "to" */
void Plink_copy(struct plink **to, struct plink *from) {
struct plink *nextpl;
while (from) {
nextpl = from->next;
from->next = *to;
*to = from;
from = nextpl;
}
}
/* Delete every plink on the list */
void Plink_delete(struct plink *plp) {
struct plink *nextpl;
while (plp) {
nextpl = plp->next;
plp->next = plink_freelist;
plink_freelist = plp;
plp = nextpl;
}
}
/*********************** From the file "report.c" **************************/
/*
** Procedures for generating reports and tables in the LEMON parser generator.
*/
/* Generate a filename with the given suffix. Space to hold the
** name comes from malloc() and must be freed by the calling
** function.
*/
PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) {
char *name;
char *cp;
char *filename = lemp->filename;
int sz;
if (outputDir) {
cp = strrchr(filename, '/');
if (cp) filename = cp + 1;
}
sz = lemonStrlen(filename);
sz += lemonStrlen(suffix);
if (outputDir) sz += lemonStrlen(outputDir) + 1;
sz += 5;
name = (char *)malloc(sz);
if (name == 0) {
fprintf(stderr, "Can't allocate space for a filename.\n");
exit(1);
}
name[0] = 0;
if (outputDir) {
lemon_strcpy(name, outputDir);
lemon_strcat(name, "/");
}
lemon_strcat(name, filename);
cp = strrchr(name, '.');
if (cp) *cp = 0;
lemon_strcat(name, suffix);
return name;
}
/* Open a file with a name based on the name of the input file,
** but with a different (specified) suffix, and return a pointer
** to the stream */
PRIVATE FILE *file_open(struct lemon *lemp, const char *suffix,
const char *mode) {
FILE *fp;
if (lemp->outname) free(lemp->outname);
lemp->outname = file_makename(lemp, suffix);
fp = fopen(lemp->outname, mode);
if (fp == 0 && *mode == 'w') {
fprintf(stderr, "Can't open file \"%s\".\n", lemp->outname);
lemp->errorcnt++;
return 0;
}
return fp;
}
/* Print the text of a rule
*/
void rule_print(FILE *out, struct rule *rp) {
int i, j;
fprintf(out, "%s", rp->lhs->name);
/* if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
fprintf(out, " ::=");
for (i = 0; i < rp->nrhs; i++) {
struct symbol *sp = rp->rhs[i];
if (sp->type == MULTITERMINAL) {
fprintf(out, " %s", sp->subsym[0]->name);
for (j = 1; j < sp->nsubsym; j++) {
fprintf(out, "|%s", sp->subsym[j]->name);
}
} else {
fprintf(out, " %s", sp->name);
}
/* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
}
}
/* Duplicate the input file without comments and without actions
** on rules */
void Reprint(struct lemon *lemp) {
struct rule *rp;
struct symbol *sp;
int i, j, maxlen, len, ncolumns, skip;
printf("// Reprint of input file \"%s\".\n// Symbols:\n", lemp->filename);
maxlen = 10;
for (i = 0; i < lemp->nsymbol; i++) {
sp = lemp->symbols[i];
len = lemonStrlen(sp->name);
if (len > maxlen) maxlen = len;
}
ncolumns = 76 / (maxlen + 5);
if (ncolumns < 1) ncolumns = 1;
skip = (lemp->nsymbol + ncolumns - 1) / ncolumns;
for (i = 0; i < skip; i++) {
printf("//");
for (j = i; j < lemp->nsymbol; j += skip) {
sp = lemp->symbols[j];
assert(sp->index == j);
printf(" %3d %-*.*s", j, maxlen, maxlen, sp->name);
}
printf("\n");
}
for (rp = lemp->rule; rp; rp = rp->next) {
rule_print(stdout, rp);
printf(".");
if (rp->precsym) printf(" [%s]", rp->precsym->name);
/* if( rp->code ) printf("\n %s",rp->code); */
printf("\n");
}
}
/* Print a single rule.
*/
void RulePrint(FILE *fp, struct rule *rp, int iCursor) {
struct symbol *sp;
int i, j;
fprintf(fp, "%s ::=", rp->lhs->name);
for (i = 0; i <= rp->nrhs; i++) {
if (i == iCursor) fprintf(fp, " *");
if (i == rp->nrhs) break;
sp = rp->rhs[i];
if (sp->type == MULTITERMINAL) {
fprintf(fp, " %s", sp->subsym[0]->name);
for (j = 1; j < sp->nsubsym; j++) {
fprintf(fp, "|%s", sp->subsym[j]->name);
}
} else {
fprintf(fp, " %s", sp->name);
}
}
}
/* Print the rule for a configuration.
*/
void ConfigPrint(FILE *fp, struct config *cfp) {
RulePrint(fp, cfp->rp, cfp->dot);
}
/* #define TEST */
#if 0
/* Print a set */
PRIVATE void SetPrint(out,set,lemp)
FILE *out;
char *set;
struct lemon *lemp;
{
int i;
char *spacer;
spacer = "";
fprintf(out,"%12s[","");
for(i=0; i<lemp->nterminal; i++){
if( SetFind(set,i) ){
fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
spacer = " ";
}
}
fprintf(out,"]\n");
}
/* Print a plink chain */
PRIVATE void PlinkPrint(out,plp,tag)
FILE *out;
struct plink *plp;
char *tag;
{
while( plp ){
fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
ConfigPrint(out,plp->cfp);
fprintf(out,"\n");
plp = plp->next;
}
}
#endif
/* Print an action to the given file descriptor. Return FALSE if
** nothing was actually printed.
*/
int PrintAction(struct action *ap, /* The action to print */
FILE *fp, /* Print the action here */
int indent /* Indent by this amount */
) {
int result = 1;
switch (ap->type) {
case SHIFT: {
struct state *stp = ap->x.stp;
fprintf(fp, "%*s shift %-7d", indent, ap->sp->name, stp->statenum);
break;
}
case REDUCE: {
struct rule *rp = ap->x.rp;
fprintf(fp, "%*s reduce %-7d", indent, ap->sp->name, rp->iRule);
RulePrint(fp, rp, -1);
break;
}
case SHIFTREDUCE: {
struct rule *rp = ap->x.rp;
fprintf(fp, "%*s shift-reduce %-7d", indent, ap->sp->name, rp->iRule);
RulePrint(fp, rp, -1);
break;
}
case ACCEPT:
fprintf(fp, "%*s accept", indent, ap->sp->name);
break;
case ERROR:
fprintf(fp, "%*s error", indent, ap->sp->name);
break;
case SRCONFLICT:
case RRCONFLICT:
fprintf(fp, "%*s reduce %-7d ** Parsing conflict **", indent,
ap->sp->name, ap->x.rp->iRule);
break;
case SSCONFLICT:
fprintf(fp, "%*s shift %-7d ** Parsing conflict **", indent,
ap->sp->name, ap->x.stp->statenum);
break;
case SH_RESOLVED:
if (showPrecedenceConflict) {
fprintf(fp, "%*s shift %-7d -- dropped by precedence", indent,
ap->sp->name, ap->x.stp->statenum);
} else {
result = 0;
}
break;
case RD_RESOLVED:
if (showPrecedenceConflict) {
fprintf(fp, "%*s reduce %-7d -- dropped by precedence", indent,
ap->sp->name, ap->x.rp->iRule);
} else {
result = 0;
}
break;
case NOT_USED:
result = 0;
break;
}
if (result && ap->spOpt) {
fprintf(fp, " /* because %s==%s */", ap->sp->name, ap->spOpt->name);
}
return result;
}
/* Generate the "*.out" log file */
void ReportOutput(struct lemon *lemp) {
int i, n;
struct state *stp;
struct config *cfp;
struct action *ap;
struct rule *rp;
FILE *fp;
fp = file_open(lemp, ".out", "wb");
if (fp == 0) return;
for (i = 0; i < lemp->nxstate; i++) {
stp = lemp->sorted[i];
fprintf(fp, "State %d:\n", stp->statenum);
if (lemp->basisflag)
cfp = stp->bp;
else
cfp = stp->cfp;
while (cfp) {
char buf[20];
if (cfp->dot == cfp->rp->nrhs) {
lemon_sprintf(buf, "(%d)", cfp->rp->iRule);
fprintf(fp, " %5s ", buf);
} else {
fprintf(fp, " ");
}
ConfigPrint(fp, cfp);
fprintf(fp, "\n");
#if 0
SetPrint(fp,cfp->fws,lemp);
PlinkPrint(fp,cfp->fplp,"To ");
PlinkPrint(fp,cfp->bplp,"From");
#endif
if (lemp->basisflag)
cfp = cfp->bp;
else
cfp = cfp->next;
}
fprintf(fp, "\n");
for (ap = stp->ap; ap; ap = ap->next) {
if (PrintAction(ap, fp, 30)) fprintf(fp, "\n");
}
fprintf(fp, "\n");
}
fprintf(fp, "----------------------------------------------------\n");
fprintf(fp, "Symbols:\n");
fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n");
for (i = 0; i < lemp->nsymbol; i++) {
int j;
struct symbol *sp;
sp = lemp->symbols[i];
fprintf(fp, " %3d: %s", i, sp->name);
if (sp->type == NONTERMINAL) {
fprintf(fp, ":");
if (sp->lambda) {
fprintf(fp, " <lambda>");
}
for (j = 0; j < lemp->nterminal; j++) {
if (sp->firstset && SetFind(sp->firstset, j)) {
fprintf(fp, " %s", lemp->symbols[j]->name);
}
}
}
if (sp->prec >= 0) fprintf(fp, " (precedence=%d)", sp->prec);
fprintf(fp, "\n");
}
fprintf(fp, "----------------------------------------------------\n");
fprintf(fp, "Syntax-only Symbols:\n");
fprintf(fp, "The following symbols never carry semantic content.\n\n");
for (i = n = 0; i < lemp->nsymbol; i++) {
int w;
struct symbol *sp = lemp->symbols[i];
if (sp->bContent) continue;
w = (int)strlen(sp->name);
if (n > 0 && n + w > 75) {
fprintf(fp, "\n");
n = 0;
}
if (n > 0) {
fprintf(fp, " ");
n++;
}
fprintf(fp, "%s", sp->name);
n += w;
}
if (n > 0) fprintf(fp, "\n");
fprintf(fp, "----------------------------------------------------\n");
fprintf(fp, "Rules:\n");
for (rp = lemp->rule; rp; rp = rp->next) {
fprintf(fp, "%4d: ", rp->iRule);
rule_print(fp, rp);
fprintf(fp, ".");
if (rp->precsym) {
fprintf(fp, " [%s precedence=%d]", rp->precsym->name, rp->precsym->prec);
}
fprintf(fp, "\n");
}
fclose(fp);
return;
}
/* Search for the file "name" which is in the same directory as
** the exacutable */
PRIVATE char *pathsearch(char *argv0, char *name, int modemask) {
const char *pathlist;
char *pathbufptr = 0;
char *pathbuf = 0;
char *path, *cp;
char c;
#ifdef __WIN32__
cp = strrchr(argv0, '\\');
#else
cp = strrchr(argv0, '/');
#endif
if (cp) {
c = *cp;
*cp = 0;
path = (char *)malloc(lemonStrlen(argv0) + lemonStrlen(name) + 2);
if (path) lemon_sprintf(path, "%s/%s", argv0, name);
*cp = c;
} else {
pathlist = getenv("PATH");
if (pathlist == 0) pathlist = ".:/bin:/usr/bin";
pathbuf = (char *)malloc(lemonStrlen(pathlist) + 1);
path = (char *)malloc(lemonStrlen(pathlist) + lemonStrlen(name) + 2);
if ((pathbuf != 0) && (path != 0)) {
pathbufptr = pathbuf;
lemon_strcpy(pathbuf, pathlist);
while (*pathbuf) {
cp = strchr(pathbuf, ':');
if (cp == 0) cp = &pathbuf[lemonStrlen(pathbuf)];
c = *cp;
*cp = 0;
lemon_sprintf(path, "%s/%s", pathbuf, name);
*cp = c;
if (c == 0)
pathbuf[0] = 0;
else
pathbuf = &cp[1];
if (access(path, modemask) == 0) break;
}
}
free(pathbufptr);
}
return path;
}
/* Given an action, compute the integer value for that action
** which is to be put in the action table of the generated machine.
** Return negative if no action should be generated.
*/
PRIVATE int compute_action(struct lemon *lemp, struct action *ap) {
int act;
switch (ap->type) {
case SHIFT:
act = ap->x.stp->statenum;
break;
case SHIFTREDUCE: {
/* Since a SHIFT is inherient after a prior REDUCE, convert any
** SHIFTREDUCE action with a nonterminal on the LHS into a simple
** REDUCE action: */
if (ap->sp->index >= lemp->nterminal) {
act = lemp->minReduce + ap->x.rp->iRule;
} else {
act = lemp->minShiftReduce + ap->x.rp->iRule;
}
break;
}
case REDUCE:
act = lemp->minReduce + ap->x.rp->iRule;
break;
case ERROR:
act = lemp->errAction;
break;
case ACCEPT:
act = lemp->accAction;
break;
default:
act = -1;
break;
}
return act;
}
#define LINESIZE 1000
/* The next cluster of routines are for reading the template file
** and writing the results to the generated parser */
/* The first function transfers data from "in" to "out" until
** a line is seen which begins with "%%". The line number is
** tracked.
**
** if name!=0, then any word that begin with "Parse" is changed to
** begin with *name instead.
*/
PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) {
int i, iStart;
char *line = gc(xmalloc(LINESIZE));
while (fgets(line, LINESIZE, in) && (line[0] != '%' || line[1] != '%')) {
(*lineno)++;
iStart = 0;
if (name) {
for (i = 0; line[i]; i++) {
if (line[i] == 'P' && strncmp(&line[i], "Parse", 5) == 0 &&
(i == 0 || !ISALPHA(line[i - 1]))) {
if (i > iStart) fprintf(out, "%.*s", i - iStart, &line[iStart]);
fprintf(out, "%s", name);
i += 4;
iStart = i + 1;
}
}
}
fprintf(out, "%s", &line[iStart]);
}
}
/* Skip forward past the header of the template file to the first "%%"
*/
PRIVATE void tplt_skip_header(FILE *in, int *lineno) {
char *line = gc(xmalloc(LINESIZE));
while (fgets(line, LINESIZE, in) && (line[0] != '%' || line[1] != '%')) {
(*lineno)++;
}
}
/* The next function finds the template file and opens it, returning
** a pointer to the opened file. */
PRIVATE FILE *tplt_open(struct lemon *lemp) {
static const char templatename[] = "third_party/lemon/lempar.c.txt";
char *buf;
FILE *in;
char *tpltname;
char *toFree = 0;
char *cp;
buf = gc(xmalloc(1000));
/* first, see if user specified a template filename on the command line. */
if (user_templatename != 0) {
if (access(user_templatename, 004) == -1) {
fprintf(stderr, "Can't find the parser driver template file \"%s\".\n",
user_templatename);
lemp->errorcnt++;
return 0;
}
in = fopen(user_templatename, "rb");
if (in == 0) {
fprintf(stderr, "Can't open the template file \"%s\".\n",
user_templatename);
lemp->errorcnt++;
return 0;
}
return in;
}
cp = strrchr(lemp->filename, '.');
if (cp) {
lemon_sprintf(buf, "%.*s.lt", (int)(cp - lemp->filename), lemp->filename);
} else {
lemon_sprintf(buf, "%s.lt", lemp->filename);
}
if (access(buf, 004) == 0) {
tpltname = buf;
} else if (access(templatename, 004) == 0) {
tpltname = templatename;
} else {
toFree = tpltname = pathsearch(lemp->argv0, templatename, 0);
}
if (tpltname == 0) {
fprintf(stderr, "Can't find the parser driver template file \"%s\".\n",
templatename);
lemp->errorcnt++;
return 0;
}
in = fopen(tpltname, "rb");
if (in == 0) {
fprintf(stderr, "Can't open the template file \"%s\".\n", tpltname);
lemp->errorcnt++;
}
free(toFree);
return in;
}
/* Print a #line directive line to the output file. */
PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) {
fprintf(out, "#line %d \"", lineno);
while (*filename) {
if (*filename == '\\') putc('\\', out);
putc(*filename, out);
filename++;
}
fprintf(out, "\"\n");
}
/* Print a string to the file and keep the linenumber up to date */
PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) {
if (str == 0) return;
while (*str) {
putc(*str, out);
if (*str == '\n') (*lineno)++;
str++;
}
if (str[-1] != '\n') {
putc('\n', out);
(*lineno)++;
}
if (!lemp->nolinenosflag) {
(*lineno)++;
tplt_linedir(out, *lineno, lemp->outname);
}
return;
}
/*
** The following routine emits code for the destructor for the
** symbol sp
*/
void emit_destructor_code(FILE *out, struct symbol *sp, struct lemon *lemp,
int *lineno) {
char *cp = 0;
if (sp->type == TERMINAL) {
cp = lemp->tokendest;
if (cp == 0) return;
fprintf(out, "{\n");
(*lineno)++;
} else if (sp->destructor) {
cp = sp->destructor;
fprintf(out, "{\n");
(*lineno)++;
if (!lemp->nolinenosflag) {
(*lineno)++;
tplt_linedir(out, sp->destLineno, lemp->filename);
}
} else if (lemp->vardest) {
cp = lemp->vardest;
if (cp == 0) return;
fprintf(out, "{\n");
(*lineno)++;
} else {
assert(0); /* Cannot happen */
}
for (; *cp; cp++) {
if (*cp == '$' && cp[1] == '$') {
fprintf(out, "(yypminor->yy%d)", sp->dtnum);
cp++;
continue;
}
if (*cp == '\n') (*lineno)++;
fputc(*cp, out);
}
fprintf(out, "\n");
(*lineno)++;
if (!lemp->nolinenosflag) {
(*lineno)++;
tplt_linedir(out, *lineno, lemp->outname);
}
fprintf(out, "}\n");
(*lineno)++;
return;
}
/*
** Return TRUE (non-zero) if the given symbol has a destructor.
*/
int has_destructor(struct symbol *sp, struct lemon *lemp) {
int ret;
if (sp->type == TERMINAL) {
ret = lemp->tokendest != 0;
} else {
ret = lemp->vardest != 0 || sp->destructor != 0;
}
return ret;
}
/*
** Append text to a dynamically allocated string. If zText is 0 then
** reset the string to be empty again. Always return the complete text
** of the string (which is overwritten with each call).
**
** n bytes of zText are stored. If n==0 then all of zText up to the first
** \000 terminator is stored. zText can contain up to two instances of
** %d. The values of p1 and p2 are written into the first and second
** %d.
**
** If n==-1, then the previous character is overwritten.
*/
PRIVATE char *append_str(const char *zText, int n, int p1, int p2) {
static char empty[1] = {0};
static char *z = 0;
static int alloced = 0;
static int used = 0;
int c;
char zInt[40];
if (zText == 0) {
if (used == 0 && z != 0) z[0] = 0;
used = 0;
return z;
}
if (n <= 0) {
if (n < 0) {
used += n;
assert(used >= 0);
}
n = lemonStrlen(zText);
}
if ((int)(n + sizeof(zInt) * 2 + used) >= alloced) {
alloced = n + sizeof(zInt) * 2 + used + 200;
z = (char *)realloc(z, alloced);
}
if (z == 0) return empty;
while (n-- > 0) {
c = *(zText++);
if (c == '%' && n > 0 && zText[0] == 'd') {
lemon_sprintf(zInt, "%d", p1);
p1 = p2;
lemon_strcpy(&z[used], zInt);
used += lemonStrlen(&z[used]);
zText++;
n--;
} else {
z[used++] = (char)c;
}
}
z[used] = 0;
return z;
}
/*
** Write and transform the rp->code string so that symbols are expanded.
** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
**
** Return 1 if the expanded code requires that "yylhsminor" local variable
** to be defined.
*/
PRIVATE int translate_code(struct lemon *lemp, struct rule *rp) {
char *cp, *xp;
int i;
int rc = 0; /* True if yylhsminor is used */
int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */
const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
char lhsused = 0; /* True if the LHS element has been used */
char lhsdirect; /* True if LHS writes directly into stack */
char used[MAXRHS]; /* True for each RHS element which is used */
char zLhs[50]; /* Convert the LHS symbol into this string */
char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */
for (i = 0; i < rp->nrhs; i++) used[i] = 0;
lhsused = 0;
if (rp->code == 0) {
static const char newlinestr[2] = {'\n', '\0'};
rp->code = newlinestr;
rp->line = rp->ruleline;
rp->noCode = 1;
} else {
rp->noCode = 0;
}
if (rp->nrhs == 0) {
/* If there are no RHS symbols, then writing directly to the LHS is ok */
lhsdirect = 1;
} else if (rp->rhsalias[0] == 0) {
/* The left-most RHS symbol has no value. LHS direct is ok. But
** we have to call the distructor on the RHS symbol first. */
lhsdirect = 1;
if (has_destructor(rp->rhs[0], lemp)) {
append_str(0, 0, 0, 0);
append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
rp->rhs[0]->index, 1 - rp->nrhs);
rp->codePrefix = Strsafe(append_str(0, 0, 0, 0));
rp->noCode = 0;
}
} else if (rp->lhsalias == 0) {
/* There is no LHS value symbol. */
lhsdirect = 1;
} else if (strcmp(rp->lhsalias, rp->rhsalias[0]) == 0) {
/* The LHS symbol and the left-most RHS symbol are the same, so
** direct writing is allowed */
lhsdirect = 1;
lhsused = 1;
used[0] = 1;
if (rp->lhs->dtnum != rp->rhs[0]->dtnum) {
ErrorMsg(lemp->filename, rp->ruleline,
"%s(%s) and %s(%s) share the same label but have "
"different datatypes.",
rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
lemp->errorcnt++;
}
} else {
lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/", rp->lhsalias,
rp->rhsalias[0]);
zSkip = strstr(rp->code, zOvwrt);
if (zSkip != 0) {
/* The code contains a special comment that indicates that it is safe
** for the LHS label to overwrite left-most RHS label. */
lhsdirect = 1;
} else {
lhsdirect = 0;
}
}
if (lhsdirect) {
sprintf(zLhs, "yymsp[%d].minor.yy%d", 1 - rp->nrhs, rp->lhs->dtnum);
} else {
rc = 1;
sprintf(zLhs, "yylhsminor.yy%d", rp->lhs->dtnum);
}
append_str(0, 0, 0, 0);
/* This const cast is wrong but harmless, if we're careful. */
for (cp = (char *)rp->code; *cp; cp++) {
if (cp == zSkip) {
append_str(zOvwrt, 0, 0, 0);
cp += lemonStrlen(zOvwrt) - 1;
dontUseRhs0 = 1;
continue;
}
if (ISALPHA(*cp) &&
(cp == rp->code || (!ISALNUM(cp[-1]) && cp[-1] != '_'))) {
char saved;
for (xp = &cp[1]; ISALNUM(*xp) || *xp == '_'; xp++)
;
saved = *xp;
*xp = 0;
if (rp->lhsalias && strcmp(cp, rp->lhsalias) == 0) {
append_str(zLhs, 0, 0, 0);
cp = xp;
lhsused = 1;
} else {
for (i = 0; i < rp->nrhs; i++) {
if (rp->rhsalias[i] && strcmp(cp, rp->rhsalias[i]) == 0) {
if (i == 0 && dontUseRhs0) {
ErrorMsg(lemp->filename, rp->ruleline,
"Label %s used after '%s'.", rp->rhsalias[0], zOvwrt);
lemp->errorcnt++;
} else if (cp != rp->code && cp[-1] == '@') {
/* If the argument is of the form @X then substituted
** the token number of X, not the value of X */
append_str("yymsp[%d].major", -1, i - rp->nrhs + 1, 0);
} else {
struct symbol *sp = rp->rhs[i];
int dtnum;
if (sp->type == MULTITERMINAL) {
dtnum = sp->subsym[0]->dtnum;
} else {
dtnum = sp->dtnum;
}
append_str("yymsp[%d].minor.yy%d", 0, i - rp->nrhs + 1, dtnum);
}
cp = xp;
used[i] = 1;
break;
}
}
}
*xp = saved;
}
append_str(cp, 1, 0, 0);
} /* End loop */
/* Main code generation completed */
cp = append_str(0, 0, 0, 0);
if (cp && cp[0]) rp->code = Strsafe(cp);
append_str(0, 0, 0, 0);
/* Check to make sure the LHS has been used */
if (rp->lhsalias && !lhsused) {
ErrorMsg(lemp->filename, rp->ruleline,
"Label \"%s\" for \"%s(%s)\" is never used.", rp->lhsalias,
rp->lhs->name, rp->lhsalias);
lemp->errorcnt++;
}
/* Generate destructor code for RHS minor values which are not referenced.
** Generate error messages for unused labels and duplicate labels.
*/
for (i = 0; i < rp->nrhs; i++) {
if (rp->rhsalias[i]) {
if (i > 0) {
int j;
if (rp->lhsalias && strcmp(rp->lhsalias, rp->rhsalias[i]) == 0) {
ErrorMsg(
lemp->filename, rp->ruleline,
"%s(%s) has the same label as the LHS but is not the left-most "
"symbol on the RHS.",
rp->rhs[i]->name, rp->rhsalias[i]);
lemp->errorcnt++;
}
for (j = 0; j < i; j++) {
if (rp->rhsalias[j] &&
strcmp(rp->rhsalias[j], rp->rhsalias[i]) == 0) {
ErrorMsg(lemp->filename, rp->ruleline,
"Label %s used for multiple symbols on the RHS of a rule.",
rp->rhsalias[i]);
lemp->errorcnt++;
break;
}
}
}
if (!used[i]) {
ErrorMsg(lemp->filename, rp->ruleline,
"Label %s for \"%s(%s)\" is never used.", rp->rhsalias[i],
rp->rhs[i]->name, rp->rhsalias[i]);
lemp->errorcnt++;
}
} else if (i > 0 && has_destructor(rp->rhs[i], lemp)) {
append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
rp->rhs[i]->index, i - rp->nrhs + 1);
}
}
/* If unable to write LHS values directly into the stack, write the
** saved LHS value now. */
if (lhsdirect == 0) {
append_str(" yymsp[%d].minor.yy%d = ", 0, 1 - rp->nrhs, rp->lhs->dtnum);
append_str(zLhs, 0, 0, 0);
append_str(";\n", 0, 0, 0);
}
/* Suffix code generation complete */
cp = append_str(0, 0, 0, 0);
if (cp && cp[0]) {
rp->codeSuffix = Strsafe(cp);
rp->noCode = 0;
}
return rc;
}
/*
** Generate code which executes when the rule "rp" is reduced. Write
** the code to "out". Make sure lineno stays up-to-date.
*/
PRIVATE void emit_code(FILE *out, struct rule *rp, struct lemon *lemp,
int *lineno) {
const char *cp;
/* Setup code prior to the #line directive */
if (rp->codePrefix && rp->codePrefix[0]) {
fprintf(out, "{%s", rp->codePrefix);
for (cp = rp->codePrefix; *cp; cp++) {
if (*cp == '\n') (*lineno)++;
}
}
/* Generate code to do the reduce action */
if (rp->code) {
if (!lemp->nolinenosflag) {
(*lineno)++;
tplt_linedir(out, rp->line, lemp->filename);
}
fprintf(out, "{%s", rp->code);
for (cp = rp->code; *cp; cp++) {
if (*cp == '\n') (*lineno)++;
}
fprintf(out, "}\n");
(*lineno)++;
if (!lemp->nolinenosflag) {
(*lineno)++;
tplt_linedir(out, *lineno, lemp->outname);
}
}
/* Generate breakdown code that occurs after the #line directive */
if (rp->codeSuffix && rp->codeSuffix[0]) {
fprintf(out, "%s", rp->codeSuffix);
for (cp = rp->codeSuffix; *cp; cp++) {
if (*cp == '\n') (*lineno)++;
}
}
if (rp->codePrefix) {
fprintf(out, "}\n");
(*lineno)++;
}
return;
}
/*
** Print the definition of the union used for the parser's data stack.
** This union contains fields for every possible data type for tokens
** and nonterminals. In the process of computing and printing this
** union, also set the ".dtnum" field of every terminal and nonterminal
** symbol.
*/
void print_stack_union(
FILE *out, /* The output stream */
struct lemon *lemp, /* The main info structure for this parser */
int *plineno, /* Pointer to the line number */
int mhflag /* True if generating makeheaders output */
) {
int lineno = *plineno; /* The line number of the output */
char **types; /* A hash table of datatypes */
int arraysize; /* Size of the "types" array */
int maxdtlength; /* Maximum length of any ".datatype" field. */
char *stddt; /* Standardized name for a datatype */
int i, j; /* Loop counters */
unsigned hash; /* For hashing the name of a type */
const char *name; /* Name of the parser */
/* Allocate and initialize types[] and allocate stddt[] */
arraysize = lemp->nsymbol * 2;
types = (char **)calloc(arraysize, sizeof(char *));
if (types == 0) {
fprintf(stderr, "Out of memory.\n");
exit(1);
}
for (i = 0; i < arraysize; i++) types[i] = 0;
maxdtlength = 0;
if (lemp->vartype) {
maxdtlength = lemonStrlen(lemp->vartype);
}
for (i = 0; i < lemp->nsymbol; i++) {
int len;
struct symbol *sp = lemp->symbols[i];
if (sp->datatype == 0) continue;
len = lemonStrlen(sp->datatype);
if (len > maxdtlength) maxdtlength = len;
}
stddt = (char *)malloc(maxdtlength * 2 + 1);
if (stddt == 0) {
fprintf(stderr, "Out of memory.\n");
exit(1);
}
/* Build a hash table of datatypes. The ".dtnum" field of each symbol
** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
** used for terminal symbols. If there is no %default_type defined then
** 0 is also used as the .dtnum value for nonterminals which do not specify
** a datatype using the %type directive.
*/
for (i = 0; i < lemp->nsymbol; i++) {
struct symbol *sp = lemp->symbols[i];
char *cp;
if (sp == lemp->errsym) {
sp->dtnum = arraysize + 1;
continue;
}
if (sp->type != NONTERMINAL || (sp->datatype == 0 && lemp->vartype == 0)) {
sp->dtnum = 0;
continue;
}
cp = sp->datatype;
if (cp == 0) cp = lemp->vartype;
j = 0;
while (ISSPACE(*cp)) cp++;
while (*cp) stddt[j++] = *cp++;
while (j > 0 && ISSPACE(stddt[j - 1])) j--;
stddt[j] = 0;
if (lemp->tokentype && strcmp(stddt, lemp->tokentype) == 0) {
sp->dtnum = 0;
continue;
}
hash = 0;
for (j = 0; stddt[j]; j++) {
hash = hash * 53 + stddt[j];
}
hash = (hash & 0x7fffffff) % arraysize;
while (types[hash]) {
if (strcmp(types[hash], stddt) == 0) {
sp->dtnum = hash + 1;
break;
}
hash++;
if (hash >= (unsigned)arraysize) hash = 0;
}
if (types[hash] == 0) {
sp->dtnum = hash + 1;
types[hash] = (char *)malloc(lemonStrlen(stddt) + 1);
if (types[hash] == 0) {
fprintf(stderr, "Out of memory.\n");
exit(1);
}
lemon_strcpy(types[hash], stddt);
}
}
/* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
name = lemp->name ? lemp->name : "Parse";
lineno = *plineno;
if (mhflag) {
fprintf(out, "#if INTERFACE\n");
lineno++;
}
fprintf(out, "#define %sTOKENTYPE %s\n", name,
lemp->tokentype ? lemp->tokentype : "void*");
lineno++;
if (mhflag) {
fprintf(out, "#endif\n");
lineno++;
}
fprintf(out, "typedef union {\n");
lineno++;
fprintf(out, " int yyinit;\n");
lineno++;
fprintf(out, " %sTOKENTYPE yy0;\n", name);
lineno++;
for (i = 0; i < arraysize; i++) {
if (types[i] == 0) continue;
fprintf(out, " %s yy%d;\n", types[i], i + 1);
lineno++;
free(types[i]);
}
if (lemp->errsym && lemp->errsym->useCnt) {
fprintf(out, " int yy%d;\n", lemp->errsym->dtnum);
lineno++;
}
free(stddt);
free(types);
fprintf(out, "} YYMINORTYPE;\n");
lineno++;
*plineno = lineno;
}
/*
** Return the name of a C datatype able to represent values between
** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof
** for that type (1, 2, or 4) into *pnByte.
*/
static const char *minimum_size_type(int lwr, int upr, int *pnByte) {
const char *zType = "int";
int nByte = 4;
if (lwr >= 0) {
if (upr <= 255) {
zType = "unsigned char";
nByte = 1;
} else if (upr < 65535) {
zType = "unsigned short int";
nByte = 2;
} else {
zType = "unsigned int";
nByte = 4;
}
} else if (lwr >= -127 && upr <= 127) {
zType = "signed char";
nByte = 1;
} else if (lwr >= -32767 && upr < 32767) {
zType = "short";
nByte = 2;
}
if (pnByte) *pnByte = nByte;
return zType;
}
/*
** Each state contains a set of token transaction and a set of
** nonterminal transactions. Each of these sets makes an instance
** of the following structure. An array of these structures is used
** to order the creation of entries in the yy_action[] table.
*/
struct axset {
struct state *stp; /* A pointer to a state */
int isTkn; /* True to use tokens. False for non-terminals */
int nAction; /* Number of actions */
int iOrder; /* Original order of action sets */
};
/*
** Compare to axset structures for sorting purposes
*/
static int axset_compare(const void *a, const void *b) {
struct axset *p1 = (struct axset *)a;
struct axset *p2 = (struct axset *)b;
int c;
c = p2->nAction - p1->nAction;
if (c == 0) {
c = p1->iOrder - p2->iOrder;
}
assert(c != 0 || p1 == p2);
return c;
}
/*
** Write text on "out" that describes the rule "rp".
*/
static void writeRuleText(FILE *out, struct rule *rp) {
int j;
fprintf(out, "%s ::=", rp->lhs->name);
for (j = 0; j < rp->nrhs; j++) {
struct symbol *sp = rp->rhs[j];
if (sp->type != MULTITERMINAL) {
fprintf(out, " %s", sp->name);
} else {
int k;
fprintf(out, " %s", sp->subsym[0]->name);
for (k = 1; k < sp->nsubsym; k++) {
fprintf(out, "|%s", sp->subsym[k]->name);
}
}
}
}
/* Generate C source code for the parser */
void ReportTable(struct lemon *lemp,
int mhflag, /* Output in makeheaders format if true */
int sqlFlag /* Generate the *.sql file too */
) {
FILE *out, *in, *sql;
char *line = gc(xmalloc(LINESIZE));
int lineno;
struct state *stp;
struct action *ap;
struct rule *rp;
struct acttab *pActtab;
int i, j, n, sz;
int nLookAhead;
int szActionType; /* sizeof(YYACTIONTYPE) */
int szCodeType; /* sizeof(YYCODETYPE) */
const char *name;
int mnTknOfst, mxTknOfst;
int mnNtOfst, mxNtOfst;
struct axset *ax;
char *prefix;
lemp->minShiftReduce = lemp->nstate;
lemp->errAction = lemp->minShiftReduce + lemp->nrule;
lemp->accAction = lemp->errAction + 1;
lemp->noAction = lemp->accAction + 1;
lemp->minReduce = lemp->noAction + 1;
lemp->maxAction = lemp->minReduce + lemp->nrule;
in = tplt_open(lemp);
if (in == 0) return;
out = file_open(lemp, ".c.inc", "wb");
if (out == 0) {
fclose(in);
return;
}
if (sqlFlag == 0) {
sql = 0;
} else {
sql = file_open(lemp, ".sql", "wb");
if (sql == 0) {
fclose(in);
fclose(out);
return;
}
fprintf(sql, "BEGIN;\n"
"CREATE TABLE symbol(\n"
" id INTEGER PRIMARY KEY,\n"
" name TEXT NOT NULL,\n"
" isTerminal BOOLEAN NOT NULL,\n"
" fallback INTEGER REFERENCES symbol"
" DEFERRABLE INITIALLY DEFERRED\n"
");\n");
for (i = 0; i < lemp->nsymbol; i++) {
fprintf(sql,
"INSERT INTO symbol(id,name,isTerminal,fallback)"
"VALUES(%d,'%s',%s",
i, lemp->symbols[i]->name,
i < lemp->nterminal ? "TRUE" : "FALSE");
if (lemp->symbols[i]->fallback) {
fprintf(sql, ",%d);\n", lemp->symbols[i]->fallback->index);
} else {
fprintf(sql, ",NULL);\n");
}
}
fprintf(sql, "CREATE TABLE rule(\n"
" ruleid INTEGER PRIMARY KEY,\n"
" lhs INTEGER REFERENCES symbol(id),\n"
" txt TEXT\n"
");\n"
"CREATE TABLE rulerhs(\n"
" ruleid INTEGER REFERENCES rule(ruleid),\n"
" pos INTEGER,\n"
" sym INTEGER REFERENCES symbol(id)\n"
");\n");
for (i = 0, rp = lemp->rule; rp; rp = rp->next, i++) {
assert(i == rp->iRule);
fprintf(sql, "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'", rp->iRule,
rp->lhs->index);
writeRuleText(sql, rp);
fprintf(sql, "');\n");
for (j = 0; j < rp->nrhs; j++) {
struct symbol *sp = rp->rhs[j];
if (sp->type != MULTITERMINAL) {
fprintf(sql, "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
i, j, sp->index);
} else {
int k;
for (k = 0; k < sp->nsubsym; k++) {
fprintf(sql,
"INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n", i,
j, sp->subsym[k]->index);
}
}
}
}
fprintf(sql, "COMMIT;\n");
}
lineno = 1;
fprintf(
out,
"/* This file is automatically generated by Lemon from input grammar\n"
"** source file \"%s\". */\n",
lemp->filename);
lineno += 2;
/* The first %include directive begins with a C-language comment,
** then skip over the header comment of the template file
*/
if (lemp->include == 0) lemp->include = "";
for (i = 0; ISSPACE(lemp->include[i]); i++) {
if (lemp->include[i] == '\n') {
lemp->include += i + 1;
i = -1;
}
}
if (lemp->include[0] == '/') {
tplt_skip_header(in, &lineno);
} else {
tplt_xfer(lemp->name, in, out, &lineno);
}
/* Generate the include code, if any */
tplt_print(out, lemp, lemp->include, &lineno);
if (mhflag) {
char *incName = file_makename(lemp, ".h.inc");
fprintf(out, "#include \"%s\"\n", incName);
lineno++;
free(incName);
}
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate #defines for all tokens */
if (lemp->tokenprefix)
prefix = lemp->tokenprefix;
else
prefix = "";
if (mhflag) {
fprintf(out, "#if INTERFACE\n");
lineno++;
} else {
fprintf(out, "#ifndef %s%s\n", prefix, lemp->symbols[1]->name);
}
for (i = 1; i < lemp->nterminal; i++) {
fprintf(out, "#define %s%-30s %2d\n", prefix, lemp->symbols[i]->name, i);
lineno++;
}
fprintf(out, "#endif\n");
lineno++;
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate the defines */
fprintf(out, "#define YYCODETYPE %s\n",
minimum_size_type(0, lemp->nsymbol, &szCodeType));
lineno++;
fprintf(out, "#define YYNOCODE %d\n", lemp->nsymbol);
lineno++;
fprintf(out, "#define YYACTIONTYPE %s\n",
minimum_size_type(0, lemp->maxAction, &szActionType));
lineno++;
if (lemp->wildcard) {
fprintf(out, "#define YYWILDCARD %d\n", lemp->wildcard->index);
lineno++;
}
print_stack_union(out, lemp, &lineno, mhflag);
fprintf(out, "#ifndef YYSTACKDEPTH\n");
lineno++;
if (lemp->stacksize) {
fprintf(out, "#define YYSTACKDEPTH %s\n", lemp->stacksize);
lineno++;
} else {
fprintf(out, "#define YYSTACKDEPTH 100\n");
lineno++;
}
fprintf(out, "#endif\n");
lineno++;
if (mhflag) {
fprintf(out, "#if INTERFACE\n");
lineno++;
}
name = lemp->name ? lemp->name : "Parse";
if (lemp->arg && lemp->arg[0]) {
i = lemonStrlen(lemp->arg);
while (i >= 1 && ISSPACE(lemp->arg[i - 1])) i--;
while (i >= 1 && (ISALNUM(lemp->arg[i - 1]) || lemp->arg[i - 1] == '_'))
i--;
fprintf(out, "#define %sARG_SDECL %s;\n", name, lemp->arg);
lineno++;
fprintf(out, "#define %sARG_PDECL ,%s\n", name, lemp->arg);
lineno++;
fprintf(out, "#define %sARG_PARAM ,%s\n", name, &lemp->arg[i]);
lineno++;
fprintf(out, "#define %sARG_FETCH %s=yypParser->%s;\n", name, lemp->arg,
&lemp->arg[i]);
lineno++;
fprintf(out, "#define %sARG_STORE yypParser->%s=%s;\n", name, &lemp->arg[i],
&lemp->arg[i]);
lineno++;
} else {
fprintf(out, "#define %sARG_SDECL\n", name);
lineno++;
fprintf(out, "#define %sARG_PDECL\n", name);
lineno++;
fprintf(out, "#define %sARG_PARAM\n", name);
lineno++;
fprintf(out, "#define %sARG_FETCH\n", name);
lineno++;
fprintf(out, "#define %sARG_STORE\n", name);
lineno++;
}
if (lemp->ctx && lemp->ctx[0]) {
i = lemonStrlen(lemp->ctx);
while (i >= 1 && ISSPACE(lemp->ctx[i - 1])) i--;
while (i >= 1 && (ISALNUM(lemp->ctx[i - 1]) || lemp->ctx[i - 1] == '_'))
i--;
fprintf(out, "#define %sCTX_SDECL %s;\n", name, lemp->ctx);
lineno++;
fprintf(out, "#define %sCTX_PDECL ,%s\n", name, lemp->ctx);
lineno++;
fprintf(out, "#define %sCTX_PARAM ,%s\n", name, &lemp->ctx[i]);
lineno++;
fprintf(out, "#define %sCTX_FETCH %s=yypParser->%s;\n", name, lemp->ctx,
&lemp->ctx[i]);
lineno++;
fprintf(out, "#define %sCTX_STORE yypParser->%s=%s;\n", name, &lemp->ctx[i],
&lemp->ctx[i]);
lineno++;
} else {
fprintf(out, "#define %sCTX_SDECL\n", name);
lineno++;
fprintf(out, "#define %sCTX_PDECL\n", name);
lineno++;
fprintf(out, "#define %sCTX_PARAM\n", name);
lineno++;
fprintf(out, "#define %sCTX_FETCH\n", name);
lineno++;
fprintf(out, "#define %sCTX_STORE\n", name);
lineno++;
}
if (mhflag) {
fprintf(out, "#endif\n");
lineno++;
}
if (lemp->errsym && lemp->errsym->useCnt) {
fprintf(out, "#define YYERRORSYMBOL %d\n", lemp->errsym->index);
lineno++;
fprintf(out, "#define YYERRSYMDT yy%d\n", lemp->errsym->dtnum);
lineno++;
}
if (lemp->has_fallback) {
fprintf(out, "#define YYFALLBACK 1\n");
lineno++;
}
/* Compute the action table, but do not output it yet. The action
** table must be computed before generating the YYNSTATE macro because
** we need to know how many states can be eliminated.
*/
ax = (struct axset *)calloc(lemp->nxstate * 2, sizeof(ax[0]));
if (ax == 0) {
fprintf(stderr, "malloc failed\n");
exit(1);
}
for (i = 0; i < lemp->nxstate; i++) {
stp = lemp->sorted[i];
ax[i * 2].stp = stp;
ax[i * 2].isTkn = 1;
ax[i * 2].nAction = stp->nTknAct;
ax[i * 2 + 1].stp = stp;
ax[i * 2 + 1].isTkn = 0;
ax[i * 2 + 1].nAction = stp->nNtAct;
}
mxTknOfst = mnTknOfst = 0;
mxNtOfst = mnNtOfst = 0;
/* In an effort to minimize the action table size, use the heuristic
** of placing the largest action sets first */
for (i = 0; i < lemp->nxstate * 2; i++) ax[i].iOrder = i;
qsort(ax, lemp->nxstate * 2, sizeof(ax[0]), axset_compare);
pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal);
for (i = 0; i < lemp->nxstate * 2 && ax[i].nAction > 0; i++) {
stp = ax[i].stp;
if (ax[i].isTkn) {
for (ap = stp->ap; ap; ap = ap->next) {
int action;
if (ap->sp->index >= lemp->nterminal) continue;
action = compute_action(lemp, ap);
if (action < 0) continue;
acttab_action(pActtab, ap->sp->index, action);
}
stp->iTknOfst = acttab_insert(pActtab, 1);
if (stp->iTknOfst < mnTknOfst) mnTknOfst = stp->iTknOfst;
if (stp->iTknOfst > mxTknOfst) mxTknOfst = stp->iTknOfst;
} else {
for (ap = stp->ap; ap; ap = ap->next) {
int action;
if (ap->sp->index < lemp->nterminal) continue;
if (ap->sp->index == lemp->nsymbol) continue;
action = compute_action(lemp, ap);
if (action < 0) continue;
acttab_action(pActtab, ap->sp->index, action);
}
stp->iNtOfst = acttab_insert(pActtab, 0);
if (stp->iNtOfst < mnNtOfst) mnNtOfst = stp->iNtOfst;
if (stp->iNtOfst > mxNtOfst) mxNtOfst = stp->iNtOfst;
}
#if 0 /* Uncomment for a trace of how the yy_action[] table fills out */
{ int jj, nn;
for(jj=nn=0; jj<pActtab->nAction; jj++){
if( pActtab->aAction[jj].action<0 ) nn++;
}
printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
i, stp->statenum, ax[i].isTkn ? "Token" : "Var ",
ax[i].nAction, pActtab->nAction, nn);
}
#endif
}
free(ax);
/* Mark rules that are actually used for reduce actions after all
** optimizations have been applied
*/
for (rp = lemp->rule; rp; rp = rp->next) rp->doesReduce = LEMON_FALSE;
for (i = 0; i < lemp->nxstate; i++) {
for (ap = lemp->sorted[i]->ap; ap; ap = ap->next) {
if (ap->type == REDUCE || ap->type == SHIFTREDUCE) {
ap->x.rp->doesReduce = 1;
}
}
}
/* Finish rendering the constants now that the action table has
** been computed */
fprintf(out, "#define YYNSTATE %d\n", lemp->nxstate);
lineno++;
fprintf(out, "#define YYNRULE %d\n", lemp->nrule);
lineno++;
fprintf(out, "#define YYNRULE_WITH_ACTION %d\n", lemp->nruleWithAction);
lineno++;
fprintf(out, "#define YYNTOKEN %d\n", lemp->nterminal);
lineno++;
fprintf(out, "#define YY_MAX_SHIFT %d\n", lemp->nxstate - 1);
lineno++;
i = lemp->minShiftReduce;
fprintf(out, "#define YY_MIN_SHIFTREDUCE %d\n", i);
lineno++;
i += lemp->nrule;
fprintf(out, "#define YY_MAX_SHIFTREDUCE %d\n", i - 1);
lineno++;
fprintf(out, "#define YY_ERROR_ACTION %d\n", lemp->errAction);
lineno++;
fprintf(out, "#define YY_ACCEPT_ACTION %d\n", lemp->accAction);
lineno++;
fprintf(out, "#define YY_NO_ACTION %d\n", lemp->noAction);
lineno++;
fprintf(out, "#define YY_MIN_REDUCE %d\n", lemp->minReduce);
lineno++;
i = lemp->minReduce + lemp->nrule;
fprintf(out, "#define YY_MAX_REDUCE %d\n", i - 1);
lineno++;
tplt_xfer(lemp->name, in, out, &lineno);
/* Now output the action table and its associates:
**
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
*/
/* Output the yy_action table */
lemp->nactiontab = n = acttab_action_size(pActtab);
lemp->tablesize += n * szActionType;
fprintf(out, "#define YY_ACTTAB_COUNT (%d)\n", n);
lineno++;
fprintf(out, "static const YYACTIONTYPE yy_action[] = {\n");
lineno++;
for (i = j = 0; i < n; i++) {
int action = acttab_yyaction(pActtab, i);
if (action < 0) action = lemp->noAction;
if (j == 0) fprintf(out, " /* %5d */ ", i);
fprintf(out, " %4d,", action);
if (j == 9 || i == n - 1) {
fprintf(out, "\n");
lineno++;
j = 0;
} else {
j++;
}
}
fprintf(out, "};\n");
lineno++;
/* Output the yy_lookahead table */
lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab);
lemp->tablesize += n * szCodeType;
fprintf(out, "static const YYCODETYPE yy_lookahead[] = {\n");
lineno++;
for (i = j = 0; i < n; i++) {
int la = acttab_yylookahead(pActtab, i);
if (la < 0) la = lemp->nsymbol;
if (j == 0) fprintf(out, " /* %5d */ ", i);
fprintf(out, " %4d,", la);
if (j == 9) {
fprintf(out, "\n");
lineno++;
j = 0;
} else {
j++;
}
}
/* Add extra entries to the end of the yy_lookahead[] table so that
** yy_shift_ofst[]+iToken will always be a valid index into the array,
** even for the largest possible value of yy_shift_ofst[] and iToken. */
nLookAhead = lemp->nterminal + lemp->nactiontab;
while (i < nLookAhead) {
if (j == 0) fprintf(out, " /* %5d */ ", i);
fprintf(out, " %4d,", lemp->nterminal);
if (j == 9) {
fprintf(out, "\n");
lineno++;
j = 0;
} else {
j++;
}
i++;
}
if (j > 0) {
fprintf(out, "\n");
lineno++;
}
fprintf(out, "};\n");
lineno++;
/* Output the yy_shift_ofst[] table */
n = lemp->nxstate;
while (n > 0 && lemp->sorted[n - 1]->iTknOfst == NO_OFFSET) n--;
fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n - 1);
lineno++;
fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst);
lineno++;
fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst);
lineno++;
fprintf(
out, "static const %s yy_shift_ofst[] = {\n",
minimum_size_type(mnTknOfst, lemp->nterminal + lemp->nactiontab, &sz));
lineno++;
lemp->tablesize += n * sz;
for (i = j = 0; i < n; i++) {
int ofst;
stp = lemp->sorted[i];
ofst = stp->iTknOfst;
if (ofst == NO_OFFSET) ofst = lemp->nactiontab;
if (j == 0) fprintf(out, " /* %5d */ ", i);
fprintf(out, " %4d,", ofst);
if (j == 9 || i == n - 1) {
fprintf(out, "\n");
lineno++;
j = 0;
} else {
j++;
}
}
fprintf(out, "};\n");
lineno++;
/* Output the yy_reduce_ofst[] table */
n = lemp->nxstate;
while (n > 0 && lemp->sorted[n - 1]->iNtOfst == NO_OFFSET) n--;
fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n - 1);
lineno++;
fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst);
lineno++;
fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst);
lineno++;
fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
minimum_size_type(mnNtOfst - 1, mxNtOfst, &sz));
lineno++;
lemp->tablesize += n * sz;
for (i = j = 0; i < n; i++) {
int ofst;
stp = lemp->sorted[i];
ofst = stp->iNtOfst;
if (ofst == NO_OFFSET) ofst = mnNtOfst - 1;
if (j == 0) fprintf(out, " /* %5d */ ", i);
fprintf(out, " %4d,", ofst);
if (j == 9 || i == n - 1) {
fprintf(out, "\n");
lineno++;
j = 0;
} else {
j++;
}
}
fprintf(out, "};\n");
lineno++;
/* Output the default action table */
fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n");
lineno++;
n = lemp->nxstate;
lemp->tablesize += n * szActionType;
for (i = j = 0; i < n; i++) {
stp = lemp->sorted[i];
if (j == 0) fprintf(out, " /* %5d */ ", i);
if (stp->iDfltReduce < 0) {
fprintf(out, " %4d,", lemp->errAction);
} else {
fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce);
}
if (j == 9 || i == n - 1) {
fprintf(out, "\n");
lineno++;
j = 0;
} else {
j++;
}
}
fprintf(out, "};\n");
lineno++;
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate the table of fallback tokens.
*/
if (lemp->has_fallback) {
int mx = lemp->nterminal - 1;
/* 2019-08-28: Generate fallback entries for every token to avoid
** having to do a range check on the index */
/* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */
lemp->tablesize += (mx + 1) * szCodeType;
for (i = 0; i <= mx; i++) {
struct symbol *p = lemp->symbols[i];
if (p->fallback == 0) {
fprintf(out, " 0, /* %10s => nothing */\n", p->name);
} else {
fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, p->name,
p->fallback->name);
}
lineno++;
}
}
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate a table containing the symbolic name of every symbol
*/
for (i = 0; i < lemp->nsymbol; i++) {
lemon_sprintf(line, "\"%s\",", lemp->symbols[i]->name);
fprintf(out, " /* %4d */ \"%s\",\n", i, lemp->symbols[i]->name);
lineno++;
}
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate a table containing a text string that describes every
** rule in the rule set of the grammar. This information is used
** when tracing REDUCE actions.
*/
for (i = 0, rp = lemp->rule; rp; rp = rp->next, i++) {
assert(rp->iRule == i);
fprintf(out, " /* %3d */ \"", i);
writeRuleText(out, rp);
fprintf(out, "\",\n");
lineno++;
}
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate code which executes every time a symbol is popped from
** the stack while processing errors or while destroying the parser.
** (In other words, generate the %destructor actions)
*/
if (lemp->tokendest) {
int once = 1;
for (i = 0; i < lemp->nsymbol; i++) {
struct symbol *sp = lemp->symbols[i];
if (sp == 0 || sp->type != TERMINAL) continue;
if (once) {
fprintf(out, " /* TERMINAL Destructor */\n");
lineno++;
once = 0;
}
fprintf(out, " case %d: /* %s */\n", sp->index, sp->name);
lineno++;
}
for (i = 0; i < lemp->nsymbol && lemp->symbols[i]->type != TERMINAL; i++)
;
if (i < lemp->nsymbol) {
emit_destructor_code(out, lemp->symbols[i], lemp, &lineno);
fprintf(out, " break;\n");
lineno++;
}
}
if (lemp->vardest) {
struct symbol *dflt_sp = 0;
int once = 1;
for (i = 0; i < lemp->nsymbol; i++) {
struct symbol *sp = lemp->symbols[i];
if (sp == 0 || sp->type == TERMINAL || sp->index <= 0 ||
sp->destructor != 0)
continue;
if (once) {
fprintf(out, " /* Default NON-TERMINAL Destructor */\n");
lineno++;
once = 0;
}
fprintf(out, " case %d: /* %s */\n", sp->index, sp->name);
lineno++;
dflt_sp = sp;
}
if (dflt_sp != 0) {
emit_destructor_code(out, dflt_sp, lemp, &lineno);
}
fprintf(out, " break;\n");
lineno++;
}
for (i = 0; i < lemp->nsymbol; i++) {
struct symbol *sp = lemp->symbols[i];
if (sp == 0 || sp->type == TERMINAL || sp->destructor == 0) continue;
if (sp->destLineno < 0) continue; /* Already emitted */
fprintf(out, " case %d: /* %s */\n", sp->index, sp->name);
lineno++;
/* Combine duplicate destructors into a single case */
for (j = i + 1; j < lemp->nsymbol; j++) {
struct symbol *sp2 = lemp->symbols[j];
if (sp2 && sp2->type != TERMINAL && sp2->destructor &&
sp2->dtnum == sp->dtnum &&
strcmp(sp->destructor, sp2->destructor) == 0) {
fprintf(out, " case %d: /* %s */\n", sp2->index, sp2->name);
lineno++;
sp2->destLineno = -1; /* Avoid emitting this destructor again */
}
}
emit_destructor_code(out, lemp->symbols[i], lemp, &lineno);
fprintf(out, " break;\n");
lineno++;
}
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate code which executes whenever the parser stack overflows */
tplt_print(out, lemp, lemp->overflow, &lineno);
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate the tables of rule information. yyRuleInfoLhs[] and
** yyRuleInfoNRhs[].
**
** Note: This code depends on the fact that rules are number
** sequentually beginning with 0.
*/
for (i = 0, rp = lemp->rule; rp; rp = rp->next, i++) {
fprintf(out, " %4d, /* (%d) ", rp->lhs->index, i);
rule_print(out, rp);
fprintf(out, " */\n");
lineno++;
}
tplt_xfer(lemp->name, in, out, &lineno);
for (i = 0, rp = lemp->rule; rp; rp = rp->next, i++) {
fprintf(out, " %3d, /* (%d) ", -rp->nrhs, i);
rule_print(out, rp);
fprintf(out, " */\n");
lineno++;
}
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate code which execution during each REDUCE action */
i = 0;
for (rp = lemp->rule; rp; rp = rp->next) {
i += translate_code(lemp, rp);
}
if (i) {
fprintf(out, " YYMINORTYPE yylhsminor;\n");
lineno++;
}
/* First output rules other than the default: rule */
for (rp = lemp->rule; rp; rp = rp->next) {
struct rule *rp2; /* Other rules with the same action */
if (rp->codeEmitted) continue;
if (rp->noCode) {
/* No C code actions, so this will be part of the "default:" rule */
continue;
}
fprintf(out, " case %d: /* ", rp->iRule);
writeRuleText(out, rp);
fprintf(out, " */\n");
lineno++;
for (rp2 = rp->next; rp2; rp2 = rp2->next) {
if (rp2->code == rp->code && rp2->codePrefix == rp->codePrefix &&
rp2->codeSuffix == rp->codeSuffix) {
fprintf(out, " case %d: /* ", rp2->iRule);
writeRuleText(out, rp2);
fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp2->iRule);
lineno++;
rp2->codeEmitted = 1;
}
}
emit_code(out, rp, lemp, &lineno);
fprintf(out, " break;\n");
lineno++;
rp->codeEmitted = 1;
}
/* Finally, output the default: rule. We choose as the default: all
** empty actions. */
fprintf(out, " default:\n");
lineno++;
for (rp = lemp->rule; rp; rp = rp->next) {
if (rp->codeEmitted) continue;
assert(rp->noCode);
fprintf(out, " /* (%d) ", rp->iRule);
writeRuleText(out, rp);
if (rp->neverReduce) {
fprintf(out, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n", rp->iRule);
lineno++;
} else if (rp->doesReduce) {
fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule);
lineno++;
} else {
fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n", rp->iRule);
lineno++;
}
}
fprintf(out, " break;\n");
lineno++;
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate code which executes if a parse fails */
tplt_print(out, lemp, lemp->failure, &lineno);
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate code which executes when a syntax error occurs */
tplt_print(out, lemp, lemp->error, &lineno);
tplt_xfer(lemp->name, in, out, &lineno);
/* Generate code which executes when the parser accepts its input */
tplt_print(out, lemp, lemp->accept, &lineno);
tplt_xfer(lemp->name, in, out, &lineno);
/* Append any addition code the user desires */
tplt_print(out, lemp, lemp->extracode, &lineno);
acttab_free(pActtab);
fclose(in);
fclose(out);
if (sql) fclose(sql);
return;
}
/* Generate a header file for the parser */
void ReportHeader(struct lemon *lemp) {
FILE *out, *in;
const char *prefix;
char *line = gc(xmalloc(LINESIZE));
char *pattern = gc(xmalloc(LINESIZE));
int i;
if (lemp->tokenprefix)
prefix = lemp->tokenprefix;
else
prefix = "";
in = file_open(lemp, ".h.inc", "rb");
if (in) {
int nextChar;
for (i = 1; i < lemp->nterminal && fgets(line, LINESIZE, in); i++) {
lemon_sprintf(pattern, "#define %s%-30s %3d\n", prefix,
lemp->symbols[i]->name, i);
if (strcmp(line, pattern)) break;
}
nextChar = fgetc(in);
fclose(in);
if (i == lemp->nterminal && nextChar == EOF) {
/* No change in the file. Don't rewrite it. */
return;
}
}
out = file_open(lemp, ".h.inc", "wb");
if (out) {
for (i = 1; i < lemp->nterminal; i++) {
fprintf(out, "#define %s%-30s %3d\n", prefix, lemp->symbols[i]->name, i);
}
fclose(out);
}
return;
}
/* Reduce the size of the action tables, if possible, by making use
** of defaults.
**
** In this version, we take the most frequent REDUCE action and make
** it the default. Except, there is no default if the wildcard token
** is a possible look-ahead.
*/
void CompressTables(struct lemon *lemp) {
struct state *stp;
struct action *ap, *ap2, *nextap;
struct rule *rp, *rp2, *rbest;
int nbest, n;
int i;
int usesWildcard;
for (i = 0; i < lemp->nstate; i++) {
stp = lemp->sorted[i];
nbest = 0;
rbest = 0;
usesWildcard = 0;
for (ap = stp->ap; ap; ap = ap->next) {
if (ap->type == SHIFT && ap->sp == lemp->wildcard) {
usesWildcard = 1;
}
if (ap->type != REDUCE) continue;
rp = ap->x.rp;
if (rp->lhsStart) continue;
if (rp == rbest) continue;
n = 1;
for (ap2 = ap->next; ap2; ap2 = ap2->next) {
if (ap2->type != REDUCE) continue;
rp2 = ap2->x.rp;
if (rp2 == rbest) continue;
if (rp2 == rp) n++;
}
if (n > nbest) {
nbest = n;
rbest = rp;
}
}
/* Do not make a default if the number of rules to default
** is not at least 1 or if the wildcard token is a possible
** lookahead.
*/
if (nbest < 1 || usesWildcard) continue;
/* Combine matching REDUCE actions into a single default */
for (ap = stp->ap; ap; ap = ap->next) {
if (ap->type == REDUCE && ap->x.rp == rbest) break;
}
assert(ap);
ap->sp = Symbol_new("{default}");
for (ap = ap->next; ap; ap = ap->next) {
if (ap->type == REDUCE && ap->x.rp == rbest) ap->type = NOT_USED;
}
stp->ap = Action_sort(stp->ap);
for (ap = stp->ap; ap; ap = ap->next) {
if (ap->type == SHIFT) break;
if (ap->type == REDUCE && ap->x.rp != rbest) break;
}
if (ap == 0) {
stp->autoReduce = 1;
stp->pDfltReduce = rbest;
}
}
/* Make a second pass over all states and actions. Convert
** every action that is a SHIFT to an autoReduce state into
** a SHIFTREDUCE action.
*/
for (i = 0; i < lemp->nstate; i++) {
stp = lemp->sorted[i];
for (ap = stp->ap; ap; ap = ap->next) {
struct state *pNextState;
if (ap->type != SHIFT) continue;
pNextState = ap->x.stp;
if (pNextState->autoReduce && pNextState->pDfltReduce != 0) {
ap->type = SHIFTREDUCE;
ap->x.rp = pNextState->pDfltReduce;
}
}
}
/* If a SHIFTREDUCE action specifies a rule that has a single RHS term
** (meaning that the SHIFTREDUCE will land back in the state where it
** started) and if there is no C-code associated with the reduce action,
** then we can go ahead and convert the action to be the same as the
** action for the RHS of the rule.
*/
for (i = 0; i < lemp->nstate; i++) {
stp = lemp->sorted[i];
for (ap = stp->ap; ap; ap = nextap) {
nextap = ap->next;
if (ap->type != SHIFTREDUCE) continue;
rp = ap->x.rp;
if (rp->noCode == 0) continue;
if (rp->nrhs != 1) continue;
#if 1
/* Only apply this optimization to non-terminals. It would be OK to
** apply it to terminal symbols too, but that makes the parser tables
** larger. */
if (ap->sp->index < lemp->nterminal) continue;
#endif
/* If we reach this point, it means the optimization can be applied */
nextap = ap;
for (ap2 = stp->ap; ap2 && (ap2 == ap || ap2->sp != rp->lhs);
ap2 = ap2->next) {
}
assert(ap2 != 0);
ap->spOpt = ap2->sp;
ap->type = ap2->type;
ap->x = ap2->x;
}
}
}
/*
** Compare two states for sorting purposes. The smaller state is the
** one with the most non-terminal actions. If they have the same number
** of non-terminal actions, then the smaller is the one with the most
** token actions.
*/
static int stateResortCompare(const void *a, const void *b) {
const struct state *pA = *(const struct state **)a;
const struct state *pB = *(const struct state **)b;
int n;
n = pB->nNtAct - pA->nNtAct;
if (n == 0) {
n = pB->nTknAct - pA->nTknAct;
if (n == 0) {
n = pB->statenum - pA->statenum;
}
}
assert(n != 0);
return n;
}
/*
** Renumber and resort states so that states with fewer choices
** occur at the end. Except, keep state 0 as the first state.
*/
void ResortStates(struct lemon *lemp) {
int i;
struct state *stp;
struct action *ap;
for (i = 0; i < lemp->nstate; i++) {
stp = lemp->sorted[i];
stp->nTknAct = stp->nNtAct = 0;
stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */
stp->iTknOfst = NO_OFFSET;
stp->iNtOfst = NO_OFFSET;
for (ap = stp->ap; ap; ap = ap->next) {
int iAction = compute_action(lemp, ap);
if (iAction >= 0) {
if (ap->sp->index < lemp->nterminal) {
stp->nTknAct++;
} else if (ap->sp->index < lemp->nsymbol) {
stp->nNtAct++;
} else {
assert(stp->autoReduce == 0 || stp->pDfltReduce == ap->x.rp);
stp->iDfltReduce = iAction;
}
}
}
}
qsort(&lemp->sorted[1], lemp->nstate - 1, sizeof(lemp->sorted[0]),
stateResortCompare);
for (i = 0; i < lemp->nstate; i++) {
lemp->sorted[i]->statenum = i;
}
lemp->nxstate = lemp->nstate;
while (lemp->nxstate > 1 && lemp->sorted[lemp->nxstate - 1]->autoReduce) {
lemp->nxstate--;
}
}
/***************** From the file "set.c" ************************************/
/*
** Set manipulation routines for the LEMON parser generator.
*/
static int size = 0;
/* Set the set size */
void SetSize(int n) {
size = n + 1;
}
/* Allocate a new set */
char *SetNew(void) {
char *s;
s = (char *)calloc(size, 1);
if (s == 0) {
memory_error();
}
return s;
}
/* Deallocate a set */
void SetFree(char *s) {
free(s);
}
/* Add a new element to the set. Return TRUE if the element was added
** and FALSE if it was already there. */
int SetAdd(char *s, int e) {
int rv;
assert(e >= 0 && e < size);
rv = s[e];
s[e] = 1;
return !rv;
}
/* Add every element of s2 to s1. Return TRUE if s1 changes. */
int SetUnion(char *s1, char *s2) {
int i, progress;
progress = 0;
for (i = 0; i < size; i++) {
if (s2[i] == 0) continue;
if (s1[i] == 0) {
progress = 1;
s1[i] = 1;
}
}
return progress;
}
/********************** From the file "table.c" ****************************/
/*
** All code in this file has been automatically generated
** from a specification in the file
** "table.q"
** by the associative array code building program "aagen".
** Do not edit this file! Instead, edit the specification
** file, then rerun aagen.
*/
/*
** Code for processing tables in the LEMON parser generator.
*/
PRIVATE unsigned strhash(const char *x) {
unsigned h = 0;
while (*x) h = h * 13 + *(x++);
return h;
}
/* Works like strdup, sort of. Save a string in malloced memory, but
** keep strings in a table so that the same string is not in more
** than one place.
*/
const char *Strsafe(const char *y) {
const char *z;
char *cpy;
if (y == 0) return 0;
z = Strsafe_find(y);
if (z == 0 && (cpy = (char *)malloc(lemonStrlen(y) + 1)) != 0) {
lemon_strcpy(cpy, y);
z = cpy;
Strsafe_insert(z);
}
MemoryCheck(z);
return z;
}
/* There is one instance of the following structure for each
** associative array of type "x1".
*/
struct s_x1 {
int size; /* The number of available slots. */
/* Must be a power of 2 greater than or */
/* equal to 1 */
int count; /* Number of currently slots filled */
struct s_x1node *tbl; /* The data stored here */
struct s_x1node **ht; /* Hash table for lookups */
};
/* There is one instance of this structure for every data element
** in an associative array of type "x1".
*/
typedef struct s_x1node {
const char *data; /* The data */
struct s_x1node *next; /* Next entry with the same hash */
struct s_x1node **from; /* Previous link */
} x1node;
/* There is only one instance of the array, which is the following */
static struct s_x1 *x1a;
/* Allocate a new associative array */
void Strsafe_init(void) {
if (x1a) return;
x1a = (struct s_x1 *)malloc(sizeof(struct s_x1));
if (x1a) {
x1a->size = 1024;
x1a->count = 0;
x1a->tbl = (x1node *)calloc(1024, sizeof(x1node) + sizeof(x1node *));
if (x1a->tbl == 0) {
free(x1a);
x1a = 0;
} else {
int i;
x1a->ht = (x1node **)&(x1a->tbl[1024]);
for (i = 0; i < 1024; i++) x1a->ht[i] = 0;
}
}
}
/* Insert a new record into the array. Return TRUE if successful.
** Prior data with the same key is NOT overwritten */
int Strsafe_insert(const char *data) {
x1node *np;
unsigned h;
unsigned ph;
if (x1a == 0) return 0;
ph = strhash(data);
h = ph & (x1a->size - 1);
np = x1a->ht[h];
while (np) {
if (strcmp(np->data, data) == 0) {
/* An existing entry with the same key is found. */
/* Fail because overwrite is not allows. */
return 0;
}
np = np->next;
}
if (x1a->count >= x1a->size) {
/* Need to make the hash table bigger */
int i, arrSize;
struct s_x1 array;
array.size = arrSize = x1a->size * 2;
array.count = x1a->count;
array.tbl = (x1node *)calloc(arrSize, sizeof(x1node) + sizeof(x1node *));
if (array.tbl == 0) return 0; /* Fail due to malloc failure */
array.ht = (x1node **)&(array.tbl[arrSize]);
for (i = 0; i < arrSize; i++) array.ht[i] = 0;
for (i = 0; i < x1a->count; i++) {
x1node *oldnp, *newnp;
oldnp = &(x1a->tbl[i]);
h = strhash(oldnp->data) & (arrSize - 1);
newnp = &(array.tbl[i]);
if (array.ht[h]) array.ht[h]->from = &(newnp->next);
newnp->next = array.ht[h];
newnp->data = oldnp->data;
newnp->from = &(array.ht[h]);
array.ht[h] = newnp;
}
free(x1a->tbl);
*x1a = array;
}
/* Insert the new data */
h = ph & (x1a->size - 1);
np = &(x1a->tbl[x1a->count++]);
np->data = data;
if (x1a->ht[h]) x1a->ht[h]->from = &(np->next);
np->next = x1a->ht[h];
x1a->ht[h] = np;
np->from = &(x1a->ht[h]);
return 1;
}
/* Return a pointer to data assigned to the given key. Return NULL
** if no such key. */
const char *Strsafe_find(const char *key) {
unsigned h;
x1node *np;
if (x1a == 0) return 0;
h = strhash(key) & (x1a->size - 1);
np = x1a->ht[h];
while (np) {
if (strcmp(np->data, key) == 0) break;
np = np->next;
}
return np ? np->data : 0;
}
/* Return a pointer to the (terminal or nonterminal) symbol "x".
** Create a new symbol if this is the first time "x" has been seen.
*/
struct symbol *Symbol_new(const char *x) {
struct symbol *sp;
sp = Symbol_find(x);
if (sp == 0) {
sp = (struct symbol *)calloc(1, sizeof(struct symbol));
MemoryCheck(sp);
sp->name = Strsafe(x);
sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
sp->rule = 0;
sp->fallback = 0;
sp->prec = -1;
sp->assoc = UNK;
sp->firstset = 0;
sp->lambda = LEMON_FALSE;
sp->destructor = 0;
sp->destLineno = 0;
sp->datatype = 0;
sp->useCnt = 0;
Symbol_insert(sp, sp->name);
}
sp->useCnt++;
return sp;
}
/* Compare two symbols for sorting purposes. Return negative,
** zero, or positive if a is less then, equal to, or greater
** than b.
**
** Symbols that begin with upper case letters (terminals or tokens)
** must sort before symbols that begin with lower case letters
** (non-terminals). And MULTITERMINAL symbols (created using the
** %token_class directive) must sort at the very end. Other than
** that, the order does not matter.
**
** We find experimentally that leaving the symbols in their original
** order (the order they appeared in the grammar file) gives the
** smallest parser tables in SQLite.
*/
int Symbolcmpp(const void *_a, const void *_b) {
const struct symbol *a = *(const struct symbol **)_a;
const struct symbol *b = *(const struct symbol **)_b;
int i1 = a->type == MULTITERMINAL ? 3 : a->name[0] > 'Z' ? 2 : 1;
int i2 = b->type == MULTITERMINAL ? 3 : b->name[0] > 'Z' ? 2 : 1;
return i1 == i2 ? a->index - b->index : i1 - i2;
}
/* There is one instance of the following structure for each
** associative array of type "x2".
*/
struct s_x2 {
int size; /* The number of available slots. */
/* Must be a power of 2 greater than or */
/* equal to 1 */
int count; /* Number of currently slots filled */
struct s_x2node *tbl; /* The data stored here */
struct s_x2node **ht; /* Hash table for lookups */
};
/* There is one instance of this structure for every data element
** in an associative array of type "x2".
*/
typedef struct s_x2node {
struct symbol *data; /* The data */
const char *key; /* The key */
struct s_x2node *next; /* Next entry with the same hash */
struct s_x2node **from; /* Previous link */
} x2node;
/* There is only one instance of the array, which is the following */
static struct s_x2 *x2a;
/* Allocate a new associative array */
void Symbol_init(void) {
if (x2a) return;
x2a = (struct s_x2 *)malloc(sizeof(struct s_x2));
if (x2a) {
x2a->size = 128;
x2a->count = 0;
x2a->tbl = (x2node *)calloc(128, sizeof(x2node) + sizeof(x2node *));
if (x2a->tbl == 0) {
free(x2a);
x2a = 0;
} else {
int i;
x2a->ht = (x2node **)&(x2a->tbl[128]);
for (i = 0; i < 128; i++) x2a->ht[i] = 0;
}
}
}
/* Insert a new record into the array. Return TRUE if successful.
** Prior data with the same key is NOT overwritten */
int Symbol_insert(struct symbol *data, const char *key) {
x2node *np;
unsigned h;
unsigned ph;
if (x2a == 0) return 0;
ph = strhash(key);
h = ph & (x2a->size - 1);
np = x2a->ht[h];
while (np) {
if (strcmp(np->key, key) == 0) {
/* An existing entry with the same key is found. */
/* Fail because overwrite is not allows. */
return 0;
}
np = np->next;
}
if (x2a->count >= x2a->size) {
/* Need to make the hash table bigger */
int i, arrSize;
struct s_x2 array;
array.size = arrSize = x2a->size * 2;
array.count = x2a->count;
array.tbl = (x2node *)calloc(arrSize, sizeof(x2node) + sizeof(x2node *));
if (array.tbl == 0) return 0; /* Fail due to malloc failure */
array.ht = (x2node **)&(array.tbl[arrSize]);
for (i = 0; i < arrSize; i++) array.ht[i] = 0;
for (i = 0; i < x2a->count; i++) {
x2node *oldnp, *newnp;
oldnp = &(x2a->tbl[i]);
h = strhash(oldnp->key) & (arrSize - 1);
newnp = &(array.tbl[i]);
if (array.ht[h]) array.ht[h]->from = &(newnp->next);
newnp->next = array.ht[h];
newnp->key = oldnp->key;
newnp->data = oldnp->data;
newnp->from = &(array.ht[h]);
array.ht[h] = newnp;
}
free(x2a->tbl);
*x2a = array;
}
/* Insert the new data */
h = ph & (x2a->size - 1);
np = &(x2a->tbl[x2a->count++]);
np->key = key;
np->data = data;
if (x2a->ht[h]) x2a->ht[h]->from = &(np->next);
np->next = x2a->ht[h];
x2a->ht[h] = np;
np->from = &(x2a->ht[h]);
return 1;
}
/* Return a pointer to data assigned to the given key. Return NULL
** if no such key. */
struct symbol *Symbol_find(const char *key) {
unsigned h;
x2node *np;
if (x2a == 0) return 0;
h = strhash(key) & (x2a->size - 1);
np = x2a->ht[h];
while (np) {
if (strcmp(np->key, key) == 0) break;
np = np->next;
}
return np ? np->data : 0;
}
/* Return the n-th data. Return NULL if n is out of range. */
struct symbol *Symbol_Nth(int n) {
struct symbol *data;
if (x2a && n > 0 && n <= x2a->count) {
data = x2a->tbl[n - 1].data;
} else {
data = 0;
}
return data;
}
/* Return the size of the array */
int Symbol_count() {
return x2a ? x2a->count : 0;
}
/* Return an array of pointers to all data in the table.
** The array is obtained from malloc. Return NULL if memory allocation
** problems, or if the array is empty. */
struct symbol **Symbol_arrayof() {
struct symbol **array;
int i, arrSize;
if (x2a == 0) return 0;
arrSize = x2a->count;
array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
if (array) {
for (i = 0; i < arrSize; i++) array[i] = x2a->tbl[i].data;
}
return array;
}
/* Compare two configurations */
int Configcmp(const char *_a, const char *_b) {
const struct config *a = (struct config *)_a;
const struct config *b = (struct config *)_b;
int x;
x = a->rp->index - b->rp->index;
if (x == 0) x = a->dot - b->dot;
return x;
}
/* Compare two states */
PRIVATE int statecmp(struct config *a, struct config *b) {
int rc;
for (rc = 0; rc == 0 && a && b; a = a->bp, b = b->bp) {
rc = a->rp->index - b->rp->index;
if (rc == 0) rc = a->dot - b->dot;
}
if (rc == 0) {
if (a) rc = 1;
if (b) rc = -1;
}
return rc;
}
/* Hash a state */
PRIVATE unsigned statehash(struct config *a) {
unsigned h = 0;
while (a) {
h = h * 571 + a->rp->index * 37 + a->dot;
a = a->bp;
}
return h;
}
/* Allocate a new state structure */
struct state *State_new() {
struct state *newstate;
newstate = (struct state *)calloc(1, sizeof(struct state));
MemoryCheck(newstate);
return newstate;
}
/* There is one instance of the following structure for each
** associative array of type "x3".
*/
struct s_x3 {
int size; /* The number of available slots. */
/* Must be a power of 2 greater than or */
/* equal to 1 */
int count; /* Number of currently slots filled */
struct s_x3node *tbl; /* The data stored here */
struct s_x3node **ht; /* Hash table for lookups */
};
/* There is one instance of this structure for every data element
** in an associative array of type "x3".
*/
typedef struct s_x3node {
struct state *data; /* The data */
struct config *key; /* The key */
struct s_x3node *next; /* Next entry with the same hash */
struct s_x3node **from; /* Previous link */
} x3node;
/* There is only one instance of the array, which is the following */
static struct s_x3 *x3a;
/* Allocate a new associative array */
void State_init(void) {
if (x3a) return;
x3a = (struct s_x3 *)malloc(sizeof(struct s_x3));
if (x3a) {
x3a->size = 128;
x3a->count = 0;
x3a->tbl = (x3node *)calloc(128, sizeof(x3node) + sizeof(x3node *));
if (x3a->tbl == 0) {
free(x3a);
x3a = 0;
} else {
int i;
x3a->ht = (x3node **)&(x3a->tbl[128]);
for (i = 0; i < 128; i++) x3a->ht[i] = 0;
}
}
}
/* Insert a new record into the array. Return TRUE if successful.
** Prior data with the same key is NOT overwritten */
int State_insert(struct state *data, struct config *key) {
x3node *np;
unsigned h;
unsigned ph;
if (x3a == 0) return 0;
ph = statehash(key);
h = ph & (x3a->size - 1);
np = x3a->ht[h];
while (np) {
if (statecmp(np->key, key) == 0) {
/* An existing entry with the same key is found. */
/* Fail because overwrite is not allows. */
return 0;
}
np = np->next;
}
if (x3a->count >= x3a->size) {
/* Need to make the hash table bigger */
int i, arrSize;
struct s_x3 array;
array.size = arrSize = x3a->size * 2;
array.count = x3a->count;
array.tbl = (x3node *)calloc(arrSize, sizeof(x3node) + sizeof(x3node *));
if (array.tbl == 0) return 0; /* Fail due to malloc failure */
array.ht = (x3node **)&(array.tbl[arrSize]);
for (i = 0; i < arrSize; i++) array.ht[i] = 0;
for (i = 0; i < x3a->count; i++) {
x3node *oldnp, *newnp;
oldnp = &(x3a->tbl[i]);
h = statehash(oldnp->key) & (arrSize - 1);
newnp = &(array.tbl[i]);
if (array.ht[h]) array.ht[h]->from = &(newnp->next);
newnp->next = array.ht[h];
newnp->key = oldnp->key;
newnp->data = oldnp->data;
newnp->from = &(array.ht[h]);
array.ht[h] = newnp;
}
free(x3a->tbl);
*x3a = array;
}
/* Insert the new data */
h = ph & (x3a->size - 1);
np = &(x3a->tbl[x3a->count++]);
np->key = key;
np->data = data;
if (x3a->ht[h]) x3a->ht[h]->from = &(np->next);
np->next = x3a->ht[h];
x3a->ht[h] = np;
np->from = &(x3a->ht[h]);
return 1;
}
/* Return a pointer to data assigned to the given key. Return NULL
** if no such key. */
struct state *State_find(struct config *key) {
unsigned h;
x3node *np;
if (x3a == 0) return 0;
h = statehash(key) & (x3a->size - 1);
np = x3a->ht[h];
while (np) {
if (statecmp(np->key, key) == 0) break;
np = np->next;
}
return np ? np->data : 0;
}
/* Return an array of pointers to all data in the table.
** The array is obtained from malloc. Return NULL if memory allocation
** problems, or if the array is empty. */
struct state **State_arrayof(void) {
struct state **array;
int i, arrSize;
if (x3a == 0) return 0;
arrSize = x3a->count;
array = (struct state **)calloc(arrSize, sizeof(struct state *));
if (array) {
for (i = 0; i < arrSize; i++) array[i] = x3a->tbl[i].data;
}
return array;
}
/* Hash a configuration */
PRIVATE unsigned confighash(struct config *a) {
unsigned h = 0;
h = h * 571 + a->rp->index * 37 + a->dot;
return h;
}
/* There is one instance of the following structure for each
** associative array of type "x4".
*/
struct s_x4 {
int size; /* The number of available slots. */
/* Must be a power of 2 greater than or */
/* equal to 1 */
int count; /* Number of currently slots filled */
struct s_x4node *tbl; /* The data stored here */
struct s_x4node **ht; /* Hash table for lookups */
};
/* There is one instance of this structure for every data element
** in an associative array of type "x4".
*/
typedef struct s_x4node {
struct config *data; /* The data */
struct s_x4node *next; /* Next entry with the same hash */
struct s_x4node **from; /* Previous link */
} x4node;
/* There is only one instance of the array, which is the following */
static struct s_x4 *x4a;
/* Allocate a new associative array */
void Configtable_init(void) {
if (x4a) return;
x4a = (struct s_x4 *)malloc(sizeof(struct s_x4));
if (x4a) {
x4a->size = 64;
x4a->count = 0;
x4a->tbl = (x4node *)calloc(64, sizeof(x4node) + sizeof(x4node *));
if (x4a->tbl == 0) {
free(x4a);
x4a = 0;
} else {
int i;
x4a->ht = (x4node **)&(x4a->tbl[64]);
for (i = 0; i < 64; i++) x4a->ht[i] = 0;
}
}
}
/* Insert a new record into the array. Return TRUE if successful.
** Prior data with the same key is NOT overwritten */
int Configtable_insert(struct config *data) {
x4node *np;
unsigned h;
unsigned ph;
if (x4a == 0) return 0;
ph = confighash(data);
h = ph & (x4a->size - 1);
np = x4a->ht[h];
while (np) {
if (Configcmp((const char *)np->data, (const char *)data) == 0) {
/* An existing entry with the same key is found. */
/* Fail because overwrite is not allows. */
return 0;
}
np = np->next;
}
if (x4a->count >= x4a->size) {
/* Need to make the hash table bigger */
int i, arrSize;
struct s_x4 array;
array.size = arrSize = x4a->size * 2;
array.count = x4a->count;
array.tbl = (x4node *)calloc(arrSize, sizeof(x4node) + sizeof(x4node *));
if (array.tbl == 0) return 0; /* Fail due to malloc failure */
array.ht = (x4node **)&(array.tbl[arrSize]);
for (i = 0; i < arrSize; i++) array.ht[i] = 0;
for (i = 0; i < x4a->count; i++) {
x4node *oldnp, *newnp;
oldnp = &(x4a->tbl[i]);
h = confighash(oldnp->data) & (arrSize - 1);
newnp = &(array.tbl[i]);
if (array.ht[h]) array.ht[h]->from = &(newnp->next);
newnp->next = array.ht[h];
newnp->data = oldnp->data;
newnp->from = &(array.ht[h]);
array.ht[h] = newnp;
}
free(x4a->tbl);
*x4a = array;
}
/* Insert the new data */
h = ph & (x4a->size - 1);
np = &(x4a->tbl[x4a->count++]);
np->data = data;
if (x4a->ht[h]) x4a->ht[h]->from = &(np->next);
np->next = x4a->ht[h];
x4a->ht[h] = np;
np->from = &(x4a->ht[h]);
return 1;
}
/* Return a pointer to data assigned to the given key. Return NULL
** if no such key. */
struct config *Configtable_find(struct config *key) {
int h;
x4node *np;
if (x4a == 0) return 0;
h = confighash(key) & (x4a->size - 1);
np = x4a->ht[h];
while (np) {
if (Configcmp((const char *)np->data, (const char *)key) == 0) break;
np = np->next;
}
return np ? np->data : 0;
}
/* Remove all data from the table. Pass each data to the function "f"
** as it is removed. ("f" may be null to avoid this step.) */
void Configtable_clear(int (*f)(struct config *)) {
int i;
if (x4a == 0 || x4a->count == 0) return;
if (f)
for (i = 0; i < x4a->count; i++) (*f)(x4a->tbl[i].data);
for (i = 0; i < x4a->size; i++) x4a->ht[i] = 0;
x4a->count = 0;
return;
}