138 lines
5.9 KiB
C++
138 lines
5.9 KiB
C++
/* clang-format off */
|
|
//= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a fairly generic conversion from a wider to a narrower
|
|
// IEEE-754 floating-point type in the default (round to nearest, ties to even)
|
|
// rounding mode. The constants and types defined following the includes below
|
|
// parameterize the conversion.
|
|
//
|
|
// This routine can be trivially adapted to support conversions to
|
|
// half-precision or from quad-precision. It does not support types that don't
|
|
// use the usual IEEE-754 interchange formats; specifically, some work would be
|
|
// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
|
|
// double-double format.
|
|
//
|
|
// Note please, however, that this implementation is only intended to support
|
|
// *narrowing* operations; if you need to convert to a *wider* floating-point
|
|
// type (e.g. float -> double), then this routine will not do what you want it
|
|
// to.
|
|
//
|
|
// It also requires that integer types at least as large as both formats
|
|
// are available on the target platform; this may pose a problem when trying
|
|
// to add support for quad on some 32-bit systems, for example.
|
|
//
|
|
// Finally, the following assumptions are made:
|
|
//
|
|
// 1. floating-point types and integer types have the same endianness on the
|
|
// target platform
|
|
//
|
|
// 2. quiet NaNs, if supported, are indicated by the leading bit of the
|
|
// significand field being set
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "libc/literal.h"
|
|
#include "third_party/compiler_rt/fp_trunc_common.inc"
|
|
|
|
static __inline dst_t __truncXfYf2__(src_t a) {
|
|
// Various constants whose values follow from the type parameters.
|
|
// Any reasonable optimizer will fold and propagate all of these.
|
|
const int srcBits = sizeof(src_t)*CHAR_BIT;
|
|
const int srcExpBits = srcBits - srcSigBits - 1;
|
|
const int srcInfExp = (1u << srcExpBits) - 1;
|
|
const int srcExpBias = srcInfExp >> 1;
|
|
|
|
const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
|
|
const src_rep_t srcSignificandMask = srcMinNormal - 1;
|
|
const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
|
|
const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
|
|
const src_rep_t srcAbsMask = srcSignMask - 1;
|
|
const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
|
|
const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
|
|
const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
|
|
const src_rep_t srcNaNCode = srcQNaN - 1;
|
|
|
|
const int dstBits = sizeof(dst_t)*CHAR_BIT;
|
|
const int dstExpBits = dstBits - dstSigBits - 1;
|
|
const int dstInfExp = (1u << dstExpBits) - 1;
|
|
const int dstExpBias = dstInfExp >> 1;
|
|
|
|
const int underflowExponent = srcExpBias + 1 - dstExpBias;
|
|
const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
|
|
const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
|
|
const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
|
|
|
|
const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
|
|
const dst_rep_t dstNaNCode = dstQNaN - 1;
|
|
|
|
// Break a into a sign and representation of the absolute value
|
|
const src_rep_t aRep = srcToRep(a);
|
|
const src_rep_t aAbs = aRep & srcAbsMask;
|
|
const src_rep_t sign = aRep & srcSignMask;
|
|
dst_rep_t absResult;
|
|
|
|
if (aAbs - underflow < aAbs - overflow) {
|
|
// The exponent of a is within the range of normal numbers in the
|
|
// destination format. We can convert by simply right-shifting with
|
|
// rounding and adjusting the exponent.
|
|
absResult = aAbs >> (srcSigBits - dstSigBits);
|
|
absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
|
|
|
|
const src_rep_t roundBits = aAbs & roundMask;
|
|
// Round to nearest
|
|
if (roundBits > halfway)
|
|
absResult++;
|
|
// Ties to even
|
|
else if (roundBits == halfway)
|
|
absResult += absResult & 1;
|
|
}
|
|
else if (aAbs > srcInfinity) {
|
|
// a is NaN.
|
|
// Conjure the result by beginning with infinity, setting the qNaN
|
|
// bit and inserting the (truncated) trailing NaN field.
|
|
absResult = (dst_rep_t)dstInfExp << dstSigBits;
|
|
absResult |= dstQNaN;
|
|
absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
|
|
}
|
|
else if (aAbs >= overflow) {
|
|
// a overflows to infinity.
|
|
absResult = (dst_rep_t)dstInfExp << dstSigBits;
|
|
}
|
|
else {
|
|
// a underflows on conversion to the destination type or is an exact
|
|
// zero. The result may be a denormal or zero. Extract the exponent
|
|
// to get the shift amount for the denormalization.
|
|
const int aExp = aAbs >> srcSigBits;
|
|
const int shift = srcExpBias - dstExpBias - aExp + 1;
|
|
|
|
const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
|
|
|
|
// Right shift by the denormalization amount with sticky.
|
|
if (shift > srcSigBits) {
|
|
absResult = 0;
|
|
} else {
|
|
const bool sticky = significand << (srcBits - shift);
|
|
src_rep_t denormalizedSignificand = significand >> shift | sticky;
|
|
absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
|
|
const src_rep_t roundBits = denormalizedSignificand & roundMask;
|
|
// Round to nearest
|
|
if (roundBits > halfway)
|
|
absResult++;
|
|
// Ties to even
|
|
else if (roundBits == halfway)
|
|
absResult += absResult & 1;
|
|
}
|
|
}
|
|
|
|
// Apply the signbit to (dst_t)abs(a).
|
|
const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
|
|
return dstFromRep(result);
|
|
}
|