cosmopolitan/libc/rand/randtest.c

185 lines
4.6 KiB
C

/* clang-format off */
/*
Apply various randomness tests to a stream of bytes
by John Walker -- September 1996
http://www.fourmilab.ch/
*/
#include "libc/math.h"
#define FALSE 0
#define TRUE 1
#define log2of10 3.32192809488736234787
static int binary = FALSE; /* Treat input as a bitstream */
static long ccount[256], /* Bins to count occurrences of values */
totalc = 0; /* Total bytes counted */
static double prob[256]; /* Probabilities per bin for entropy */
/* RT_LOG2 -- Calculate log to the base 2 */
static double rt_log2(double x)
{
return log2of10 * log10(x);
}
#define MONTEN 6 /* Bytes used as Monte Carlo
co-ordinates. This should be no more
bits than the mantissa of your
"double" floating point type. */
static int mp, sccfirst;
static unsigned int monte[MONTEN];
static long inmont, mcount;
static double cexp_, incirc, montex, montey, montepi,
scc, sccun, sccu0, scclast, scct1, scct2, scct3,
ent, chisq, datasum;
/* RT_INIT -- Initialise random test counters. */
void rt_init(int binmode)
{
int i;
binary = binmode; /* Set binary / byte mode */
/* Initialise for calculations */
ent = 0.0; /* Clear entropy accumulator */
chisq = 0.0; /* Clear Chi-Square */
datasum = 0.0; /* Clear sum of bytes for arithmetic mean */
mp = 0; /* Reset Monte Carlo accumulator pointer */
mcount = 0; /* Clear Monte Carlo tries */
inmont = 0; /* Clear Monte Carlo inside count */
incirc = 65535.0 * 65535.0;/* In-circle distance for Monte Carlo */
sccfirst = TRUE; /* Mark first time for serial correlation */
scct1 = scct2 = scct3 = 0.0; /* Clear serial correlation terms */
incirc = pow(pow(256.0, (double) (MONTEN / 2)) - 1, 2.0);
for (i = 0; i < 256; i++) {
ccount[i] = 0;
}
totalc = 0;
}
/* RT_ADD -- Add one or more bytes to accumulation. */
void rt_add(void *buf, int bufl)
{
unsigned char *bp = buf;
int oc, c, bean;
while (bean = 0, (bufl-- > 0)) {
oc = *bp++;
do {
if (binary) {
c = !!(oc & 0x80);
} else {
c = oc;
}
ccount[c]++; /* Update counter for this bin */
totalc++;
/* Update inside / outside circle counts for Monte Carlo
computation of PI */
if (bean == 0) {
monte[mp++] = oc; /* Save character for Monte Carlo */
if (mp >= MONTEN) { /* Calculate every MONTEN character */
int mj;
mp = 0;
mcount++;
montex = montey = 0;
for (mj = 0; mj < MONTEN / 2; mj++) {
montex = (montex * 256.0) + monte[mj];
montey = (montey * 256.0) + monte[(MONTEN / 2) + mj];
}
if ((montex * montex + montey * montey) <= incirc) {
inmont++;
}
}
}
/* Update calculation of serial correlation coefficient */
sccun = c;
if (sccfirst) {
sccfirst = FALSE;
scclast = 0;
sccu0 = sccun;
} else {
scct1 = scct1 + scclast * sccun;
}
scct2 = scct2 + sccun;
scct3 = scct3 + (sccun * sccun);
scclast = sccun;
oc <<= 1;
} while (binary && (++bean < 8));
}
}
/* RT_END -- Complete calculation and return results. */
void rt_end(double *r_ent, double *r_chisq, double *r_mean,
double *r_montepicalc, double *r_scc)
{
int i;
/* Complete calculation of serial correlation coefficient */
scct1 = scct1 + scclast * sccu0;
scct2 = scct2 * scct2;
scc = totalc * scct3 - scct2;
if (scc == 0.0) {
scc = -100000;
} else {
scc = (totalc * scct1 - scct2) / scc;
}
/* Scan bins and calculate probability for each bin and
Chi-Square distribution. The probability will be reused
in the entropy calculation below. While we're at it,
we sum of all the data which will be used to compute the
mean. */
cexp_ = totalc / (binary ? 2.0 : 256.0); /* Expected count per bin */
for (i = 0; i < (binary ? 2 : 256); i++) {
double a = ccount[i] - cexp_;
prob[i] = ((double) ccount[i]) / totalc;
chisq += (a * a) / cexp_;
datasum += ((double) i) * ccount[i];
}
/* Calculate entropy */
for (i = 0; i < (binary ? 2 : 256); i++) {
if (prob[i] > 0.0) {
ent += prob[i] * rt_log2(1 / prob[i]);
}
}
/* Calculate Monte Carlo value for PI from percentage of hits
within the circle */
montepi = 4.0 * (((double) inmont) / mcount);
/* Return results through arguments */
*r_ent = ent;
*r_chisq = chisq;
*r_mean = datasum / totalc;
*r_montepicalc = montepi;
*r_scc = scc;
}