cosmopolitan/tool/build/emubin/metalsha256.c

157 lines
6.2 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ This program is free software; you can redistribute it and/or modify │
│ it under the terms of the GNU General Public License as published by │
│ the Free Software Foundation; version 2 of the License. │
│ │
│ This program is distributed in the hope that it will be useful, but │
│ WITHOUT ANY WARRANTY; without even the implied warranty of │
│ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │
│ General Public License for more details. │
│ │
│ You should have received a copy of the GNU General Public License │
│ along with this program; if not, write to the Free Software │
│ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │
│ 02110-1301 USA │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/bits/xmmintrin.internal.h"
#include "libc/intrin/repstosb.h"
#include "tool/build/emubin/metalsha256.h"
#define ROTR(a, b) (((a) >> (b)) | ((a) << (32 - (b))))
#define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define EP1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SIG0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ ((x) >> 3))
#define SIG1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ ((x) >> 10))
const uint32_t kMetalSha256Tab[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
void MetalSha256Cleanup(struct MetalSha256Ctx *ctx) {
repstosb(ctx, 0, sizeof(*ctx));
asm("pxor\t%xmm0,%xmm0\n\t"
"pxor\t%xmm1,%xmm1\n\t"
"pxor\t%xmm2,%xmm2\n\t"
"pxor\t%xmm3,%xmm3\n\t"
"pxor\t%xmm4,%xmm4\n\t"
"pxor\t%xmm5,%xmm5\n\t"
"pxor\t%xmm6,%xmm6\n\t"
"pxor\t%xmm7,%xmm7");
}
void MetalSha256Transform(uint32_t state[8], const uint8_t data[64]) {
unsigned i;
uint32_t a, b, c, d, e, f, g, h, t1, t2, m[64];
for (i = 0; i < 16; ++i, data += 4) {
m[i] = (uint32_t)data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3];
}
for (; i < 64; ++i) {
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
}
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e, f, g) + kMetalSha256Tab[i] + m[i];
t2 = EP0(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
void MetalSha256Init(struct MetalSha256Ctx *ctx) {
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void MetalSha256Update(struct MetalSha256Ctx *ctx, const uint8_t *data,
long size) {
long i;
for (i = 0; i < size; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
MetalSha256Transform(ctx->state, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void MetalSha256Final(struct MetalSha256Ctx *ctx, uint8_t *hash) {
long i;
i = ctx->datalen;
ctx->data[i++] = 0x80;
if (ctx->datalen < 56) {
repstosb(ctx->data + i, 0, 56 - i);
} else {
repstosb(ctx->data + i, 0, 64 - i);
MetalSha256Transform(ctx->state, ctx->data);
repstosb(ctx->data, 0, 56);
}
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
MetalSha256Transform(ctx->state, ctx->data);
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0xff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0xff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0xff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0xff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0xff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0xff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0xff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0xff;
}
MetalSha256Cleanup(ctx);
}