cosmopolitan/tool/build/lib/syscall.c

1409 lines
40 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/calls/calls.h"
#include "libc/calls/internal.h"
#include "libc/calls/ioctl.h"
#include "libc/calls/struct/iovec.h"
#include "libc/calls/struct/rusage.h"
#include "libc/calls/struct/sigaction-linux.internal.h"
#include "libc/calls/struct/sigaction.h"
#include "libc/calls/struct/stat.h"
#include "libc/calls/struct/termios.h"
#include "libc/calls/struct/timespec.h"
#include "libc/calls/struct/timeval.h"
#include "libc/calls/struct/winsize.h"
#include "libc/errno.h"
#include "libc/fmt/fmt.h"
#include "libc/log/check.h"
#include "libc/log/log.h"
#include "libc/macros.h"
#include "libc/mem/mem.h"
#include "libc/nexgen32e/vendor.internal.h"
#include "libc/runtime/gc.h"
#include "libc/runtime/runtime.h"
#include "libc/sock/select.h"
#include "libc/sock/sock.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/af.h"
#include "libc/sysv/consts/at.h"
#include "libc/sysv/consts/clock.h"
#include "libc/sysv/consts/f.h"
#include "libc/sysv/consts/fd.h"
#include "libc/sysv/consts/ipproto.h"
#include "libc/sysv/consts/lock.h"
#include "libc/sysv/consts/madv.h"
#include "libc/sysv/consts/map.h"
#include "libc/sysv/consts/msync.h"
#include "libc/sysv/consts/o.h"
#include "libc/sysv/consts/ok.h"
#include "libc/sysv/consts/prot.h"
#include "libc/sysv/consts/rusage.h"
#include "libc/sysv/consts/sa.h"
#include "libc/sysv/consts/sig.h"
#include "libc/sysv/consts/so.h"
#include "libc/sysv/consts/sock.h"
#include "libc/sysv/consts/sol.h"
#include "libc/sysv/consts/tcp.h"
#include "libc/sysv/consts/termios.h"
#include "libc/sysv/consts/w.h"
#include "libc/sysv/errfuns.h"
#include "libc/time/struct/timezone.h"
#include "libc/time/time.h"
#include "libc/x/x.h"
#include "tool/build/lib/case.h"
#include "tool/build/lib/endian.h"
#include "tool/build/lib/iovs.h"
#include "tool/build/lib/machine.h"
#include "tool/build/lib/memory.h"
#include "tool/build/lib/pml4t.h"
#include "tool/build/lib/syscall.h"
#include "tool/build/lib/throw.h"
#include "tool/build/lib/xlaterrno.h"
#define AT_FDCWD_LINUX -100
#define TIOCGWINSZ_LINUX 0x5413
#define TCGETS_LINUX 0x5401
#define TCSETS_LINUX 0x5402
#define TCSETSW_LINUX 0x5403
#define TCSETSF_LINUX 0x5404
#define ISIG_LINUX 0b0000000000000001
#define ICANON_LINUX 0b0000000000000010
#define ECHO_LINUX 0b0000000000001000
#define OPOST_LINUX 0b0000000000000001
#define POINTER(x) ((void *)(intptr_t)(x))
#define UNPOINTER(x) ((int64_t)(intptr_t)(x))
#define SYSCALL(x, y) CASE(x, asm("# " #y); ax = y)
#define XLAT(x, y) CASE(x, return y)
#define PNN(x) ResolveAddress(m, x)
#define P(x) ((x) ? PNN(x) : 0)
#define ASSIGN(D, S) memcpy(&D, &S, MIN(sizeof(S), sizeof(D)))
const struct MachineFdCb kMachineFdCbHost = {
.close = close,
.readv = readv,
.writev = writev,
.ioctl = ioctl,
};
static int XlatSignal(int sig) {
switch (sig) {
XLAT(1, SIGHUP);
XLAT(2, SIGINT);
XLAT(3, SIGQUIT);
XLAT(4, SIGILL);
XLAT(5, SIGTRAP);
XLAT(6, SIGABRT);
XLAT(7, SIGBUS);
XLAT(8, SIGFPE);
XLAT(9, SIGKILL);
XLAT(10, SIGUSR1);
XLAT(11, SIGSEGV);
XLAT(13, SIGPIPE);
XLAT(14, SIGALRM);
XLAT(15, SIGTERM);
XLAT(21, SIGTTIN);
XLAT(22, SIGTTOU);
XLAT(24, SIGXCPU);
XLAT(25, SIGXFSZ);
XLAT(26, SIGVTALRM);
XLAT(27, SIGPROF);
XLAT(28, SIGWINCH);
XLAT(17, SIGCHLD);
XLAT(18, SIGCONT);
XLAT(29, SIGIO);
XLAT(19, SIGSTOP);
XLAT(31, SIGSYS);
XLAT(20, SIGTSTP);
XLAT(23, SIGURG);
XLAT(12, SIGUSR2);
XLAT(0x2000, SIGSTKSZ);
XLAT(30, SIGPWR);
XLAT(0x10, SIGSTKFLT);
default:
return einval();
}
}
static int XlatSig(int x) {
switch (x) {
XLAT(0, SIG_BLOCK);
XLAT(1, SIG_UNBLOCK);
XLAT(2, SIG_SETMASK);
default:
return einval();
}
}
static int XlatSocketFamily(int x) {
switch (x) {
XLAT(0, AF_INET);
XLAT(2, AF_INET);
default:
return epfnosupport();
}
}
static int XlatSocketType(int x) {
switch (x) {
XLAT(1, SOCK_STREAM);
XLAT(2, SOCK_DGRAM);
default:
return einval();
}
}
static int XlatSocketProtocol(int x) {
switch (x) {
XLAT(6, IPPROTO_TCP);
XLAT(17, IPPROTO_UDP);
default:
return einval();
}
}
static unsigned XlatSocketFlags(int flags) {
unsigned res = 0;
if (flags & 0x080000) res |= SOCK_CLOEXEC;
if (flags & 0x000800) res |= SOCK_NONBLOCK;
return res;
}
static int XlatSocketLevel(int x) {
switch (x) {
XLAT(0, SOL_IP);
XLAT(1, SOL_SOCKET);
XLAT(6, SOL_TCP);
XLAT(17, SOL_UDP);
default:
return einval();
}
}
static int XlatSocketOptname(int x) {
switch (x) {
XLAT(2, SO_REUSEADDR);
XLAT(15, SO_REUSEPORT);
XLAT(9, SO_KEEPALIVE);
XLAT(5, SO_DONTROUTE);
XLAT(7, SO_SNDBUF);
XLAT(8, SO_RCVBUF);
XLAT(13, SO_LINGER);
default:
return einval();
}
}
static int XlatMapFlags(int x) {
unsigned res = 0;
if (x & 1) res |= MAP_SHARED;
if (x & 2) res |= MAP_PRIVATE;
if (x & 16) res |= MAP_FIXED;
if (x & 32) res |= MAP_ANONYMOUS;
return res;
}
static int XlatAccess(int x) {
unsigned res = F_OK;
if (x & 1) res |= X_OK;
if (x & 2) res |= W_OK;
if (x & 4) res |= R_OK;
return res;
}
static int XlatSigaction(int x) {
unsigned res = 0;
if (x & 0x00000001) res |= SA_NOCLDSTOP;
if (x & 0x00000002) res |= SA_NOCLDWAIT;
if (x & 0x00000004) res |= SA_SIGINFO;
if (x & 0x04000000) res |= SA_RESTORER;
if (x & 0x08000000) res |= SA_ONSTACK;
if (x & 0x10000000) res |= SA_RESTART;
if (x & 0x40000000) res |= SA_NODEFER;
if (x & 0x40000000) res |= SA_NOMASK;
if (x & 0x80000000) res |= SA_RESETHAND;
if (x & 0x80000000) res |= SA_ONESHOT;
return res;
}
static int XlatSo(int x) {
switch (x) {
XLAT(-1, SO_EXCLUSIVEADDRUSE);
XLAT(1, SO_DEBUG);
XLAT(2, SO_REUSEADDR);
XLAT(3, SO_TYPE);
XLAT(4, SO_ERROR);
XLAT(5, SO_DONTROUTE);
XLAT(6, SO_BROADCAST);
XLAT(7, SO_SNDBUF);
XLAT(8, SO_RCVBUF);
XLAT(9, SO_KEEPALIVE);
XLAT(10, SO_OOBINLINE);
XLAT(13, SO_LINGER);
XLAT(15, SO_REUSEPORT);
XLAT(17, SO_PEERCRED);
XLAT(18, SO_RCVLOWAT);
XLAT(19, SO_SNDLOWAT);
XLAT(20, SO_RCVTIMEO);
XLAT(21, SO_SNDTIMEO);
XLAT(29, SO_TIMESTAMP);
XLAT(30, SO_ACCEPTCONN);
XLAT(38, SO_PROTOCOL);
XLAT(39, SO_DOMAIN);
XLAT(47, SO_MAX_PACING_RATE);
default:
return x;
}
}
static int XlatClock(int x) {
switch (x) {
XLAT(0, CLOCK_REALTIME);
XLAT(4, CLOCK_MONOTONIC);
default:
return x;
}
}
static int XlatTcp(int x) {
switch (x) {
XLAT(1, TCP_NODELAY);
XLAT(2, TCP_MAXSEG);
XLAT(4, TCP_KEEPIDLE);
XLAT(5, TCP_KEEPINTVL);
XLAT(6, TCP_KEEPCNT);
XLAT(23, TCP_FASTOPEN);
default:
return x;
}
}
static int XlatFd(struct Machine *m, int fd) {
if (!(0 <= fd && fd < m->fds.i)) return ebadf();
if (!m->fds.p[fd].cb) return ebadf();
return m->fds.p[fd].fd;
}
static int XlatAfd(struct Machine *m, int fd) {
if (fd == AT_FDCWD_LINUX) return AT_FDCWD;
return XlatFd(m, fd);
}
static int XlatAtf(int x) {
unsigned res = 0;
if (x & 0x0100) res |= AT_SYMLINK_NOFOLLOW;
if (x & 0x0200) res |= AT_REMOVEDIR;
if (x & 0x0400) res |= AT_SYMLINK_FOLLOW;
if (x & 0x1000) res |= AT_EMPTY_PATH;
return res;
}
static int XlatMsyncFlags(int x) {
unsigned res = 0;
if (x & 1) res |= MS_ASYNC;
if (x & 2) res |= MS_INVALIDATE;
if (x & 4) res |= MS_SYNC;
return res;
}
static unsigned XlatOpenMode(unsigned flags) {
switch (flags & 3) {
case 0:
return O_RDONLY;
case 1:
return O_WRONLY;
case 2:
return O_RDWR;
default:
unreachable;
}
}
static unsigned XlatOpenFlags(unsigned flags) {
unsigned res = 0;
res = XlatOpenMode(flags);
if (flags & 0x80000) res |= O_CLOEXEC;
if (flags & 0x400) res |= O_APPEND;
if (flags & 0x40) res |= O_CREAT;
if (flags & 0x80) res |= O_EXCL;
if (flags & 0x200) res |= O_TRUNC;
if (flags & 0x0800) res |= O_NDELAY;
if (flags & 0x4000) res |= O_DIRECT;
if (flags & 0x0800) res |= O_NONBLOCK;
if (flags & 0x1000) res |= O_DSYNC;
if (flags & 0x101000) res |= O_RSYNC;
if (flags & 0x040000) res |= O_NOATIME;
return res;
}
static int XlatFcntlCmd(int x) {
switch (x) {
XLAT(1, F_GETFD);
XLAT(2, F_SETFD);
XLAT(3, F_GETFL);
XLAT(4, F_SETFL);
default:
return einval();
}
}
static int XlatFcntlArg(int x) {
switch (x) {
XLAT(0, 0);
XLAT(1, FD_CLOEXEC);
XLAT(0x0800, O_NONBLOCK);
default:
return einval();
}
}
static int XlatAdvice(int x) {
switch (x) {
XLAT(0, MADV_NORMAL);
XLAT(1, MADV_RANDOM);
XLAT(2, MADV_SEQUENTIAL);
XLAT(3, MADV_WILLNEED);
XLAT(4, MADV_DONTNEED);
XLAT(8, MADV_FREE);
XLAT(12, MADV_MERGEABLE);
default:
return einval();
}
}
static int XlatLock(int x) {
unsigned res = 0;
if (x & 1) res |= LOCK_SH;
if (x & 2) res |= LOCK_EX;
if (x & 4) res |= LOCK_NB;
if (x & 8) res |= LOCK_UN;
return res;
}
static int XlatWait(int x) {
unsigned res = 0;
if (x & 1) res |= WNOHANG;
if (x & 2) res |= WUNTRACED;
if (x & 8) res |= WCONTINUED;
return res;
}
static int XlatRusage(int x) {
switch (x) {
XLAT(0, RUSAGE_SELF);
XLAT(-1, RUSAGE_CHILDREN);
XLAT(1, RUSAGE_THREAD);
default:
return einval();
}
}
static const char *GetSimulated(void) {
if (IsGenuineCosmo()) {
return " SIMULATED";
} else {
return "";
}
}
static int AppendIovsReal(struct Machine *m, struct Iovs *ib, int64_t addr,
size_t size) {
void *real;
size_t have;
unsigned got;
while (size) {
if (!(real = FindReal(m, addr))) return efault();
have = 0x1000 - (addr & 0xfff);
got = MIN(size, have);
if (AppendIovs(ib, real, got) == -1) return -1;
addr += got;
size -= got;
}
return 0;
}
static int AppendIovsGuest(struct Machine *m, struct Iovs *iv, int64_t iovaddr,
long iovlen) {
int rc;
size_t i, iovsize;
struct iovec *guestiovs;
if (!__builtin_mul_overflow(iovlen, sizeof(struct iovec), &iovsize) &&
(0 <= iovsize && iovsize <= 0x7ffff000)) {
if ((guestiovs = malloc(iovsize))) {
VirtualSendRead(m, guestiovs, iovaddr, iovsize);
for (rc = i = 0; i < iovlen; ++i) {
if (AppendIovsReal(m, iv, (intptr_t)guestiovs[i].iov_base,
guestiovs[i].iov_len) == -1) {
rc = -1;
break;
}
}
free(guestiovs);
} else {
rc = enomem();
}
} else {
rc = eoverflow();
}
return rc;
}
static struct sigaction *CoerceSigactionToCosmo(
struct sigaction *dst, const struct sigaction$linux *src) {
if (!src) return NULL;
memset(dst, 0, sizeof(*dst));
ASSIGN(dst->sa_handler, src->sa_handler);
ASSIGN(dst->sa_restorer, src->sa_restorer);
ASSIGN(dst->sa_flags, src->sa_flags);
ASSIGN(dst->sa_mask, src->sa_mask);
return dst;
}
static struct sigaction$linux *CoerceSigactionToLinux(
struct sigaction$linux *dst, const struct sigaction *src) {
if (!dst) return NULL;
memset(dst, 0, sizeof(*dst));
ASSIGN(dst->sa_handler, src->sa_handler);
ASSIGN(dst->sa_restorer, src->sa_restorer);
ASSIGN(dst->sa_flags, src->sa_flags);
ASSIGN(dst->sa_mask, src->sa_mask);
return dst;
}
static int OpArchPrctl(struct Machine *m, int code, int64_t addr) {
switch (code) {
case ARCH_SET_GS:
Write64(m->gs, addr);
return 0;
case ARCH_SET_FS:
Write64(m->fs, addr);
return 0;
case ARCH_GET_GS:
VirtualRecvWrite(m, addr, m->gs, 8);
return 0;
case ARCH_GET_FS:
VirtualRecvWrite(m, addr, m->fs, 8);
return 0;
default:
return einval();
}
}
static int OpMprotect(struct Machine *m, int64_t addr, uint64_t len, int prot) {
return 0;
}
static int OpMadvise(struct Machine *m, int64_t addr, size_t length,
int advice) {
return enosys();
}
static int64_t OpBrk(struct Machine *m, int64_t addr) {
addr = ROUNDUP(addr, PAGESIZE);
if (addr > m->brk) {
if (ReserveVirtual(m, m->brk, addr - m->brk, 0x0207) != -1) {
m->brk = addr;
}
} else if (addr < m->brk) {
if (FreeVirtual(m, addr, m->brk - addr) != -1) {
m->brk = addr;
}
}
return m->brk;
}
static int OpMunmap(struct Machine *m, int64_t virt, uint64_t size) {
VERBOSEF("MUNMAP%s %p %,ld", GetSimulated(), virt, size);
return FreeVirtual(m, virt, size);
}
static int64_t OpMmap(struct Machine *m, int64_t virt, size_t size, int prot,
int flags, int fd, int64_t offset) {
void *tmp;
uint64_t key;
VERBOSEF("MMAP%s %p %,ld %#x %#x %d %#lx", GetSimulated(), virt, size, prot,
flags, fd, offset);
if (prot & PROT_READ) {
key = 0x0205;
if (prot & PROT_WRITE) key |= 2;
if (!(prot & PROT_EXEC)) key |= 0x8000000000000000;
flags = XlatMapFlags(flags);
if (fd != -1 && (fd = XlatFd(m, fd)) == -1) return -1;
if (!(flags & MAP_FIXED)) {
if (!virt) {
if ((virt = FindVirtual(m, m->brk, size)) == -1) return -1;
m->brk = virt + size;
} else {
if ((virt = FindVirtual(m, virt, size)) == -1) return -1;
}
}
if (ReserveVirtual(m, virt, size, key) != -1) {
if (fd != -1 && !(flags & MAP_ANONYMOUS)) {
/* TODO: lazy file mappings */
CHECK_NOTNULL((tmp = malloc(size)));
CHECK_EQ(size, pread(fd, tmp, size, offset));
VirtualRecvWrite(m, virt, tmp, size);
free(tmp);
}
} else {
FreeVirtual(m, virt, size);
return -1;
}
return virt;
} else {
return FreeVirtual(m, virt, size);
}
}
static int OpMsync(struct Machine *m, int64_t virt, size_t size, int flags) {
return enosys();
#if 0
size_t i;
void *page;
virt = ROUNDDOWN(virt, 4096);
flags = XlatMsyncFlags(flags);
for (i = 0; i < size; i += 4096) {
if (!(page = FindReal(m, virt + i))) return efault();
if (msync(page, 4096, flags) == -1) return -1;
}
return 0;
#endif
}
static int OpClose(struct Machine *m, int fd) {
int rc;
struct FdClosed *closed;
if (!(0 <= fd && fd < m->fds.i)) return ebadf();
if (!m->fds.p[fd].cb) return ebadf();
rc = m->fds.p[fd].cb->close(m->fds.p[fd].fd);
MachineFdRemove(&m->fds, fd);
return rc;
}
static int OpOpenat(struct Machine *m, int dirfd, int64_t pathaddr, int flags,
int mode) {
int fd, i;
const char *path;
flags = XlatOpenFlags(flags);
if ((dirfd = XlatAfd(m, dirfd)) == -1) return -1;
if ((i = MachineFdAdd(&m->fds)) == -1) return -1;
path = LoadStr(m, pathaddr);
if ((fd = openat(dirfd, path, flags, mode)) != -1) {
m->fds.p[i].cb = &kMachineFdCbHost;
m->fds.p[i].fd = fd;
VERBOSEF("openat(%#x, %`'s, %#x, %#x) → %d [%d]", dirfd, path, flags, mode,
i, fd);
fd = i;
} else {
MachineFdRemove(&m->fds, i);
VERBOSEF("openat(%#x, %`'s, %#x, %#x) failed", dirfd, path, flags, mode);
}
return fd;
}
static int OpPipe(struct Machine *m, int64_t pipefds_addr) {
int i, j, pipefds[2];
if ((i = MachineFdAdd(&m->fds)) != -1) {
if ((j = MachineFdAdd(&m->fds)) != -1) {
if (pipe(pipefds) != -1) {
m->fds.p[i].cb = &kMachineFdCbHost;
m->fds.p[i].fd = pipefds[0];
m->fds.p[j].cb = &kMachineFdCbHost;
m->fds.p[j].fd = pipefds[1];
pipefds[0] = i;
pipefds[1] = j;
VirtualRecvWrite(m, pipefds_addr, pipefds, sizeof(pipefds));
return 0;
}
MachineFdRemove(&m->fds, j);
}
MachineFdRemove(&m->fds, i);
}
return -1;
}
static int OpDup(struct Machine *m, int fd) {
int i;
if ((fd = XlatFd(m, fd)) != -1) {
if ((i = MachineFdAdd(&m->fds)) != -1) {
if ((fd = dup(fd)) != -1) {
m->fds.p[i].cb = &kMachineFdCbHost;
m->fds.p[i].fd = fd;
return i;
}
MachineFdRemove(&m->fds, i);
}
}
return -1;
}
static int OpDup2(struct Machine *m, int fd, int newfd) {
int i, rc;
if ((fd = XlatFd(m, fd)) == -1) return -1;
if ((0 <= newfd && newfd < m->fds.i)) {
if ((rc = dup2(fd, m->fds.p[newfd].fd)) != -1) {
m->fds.p[newfd].cb = &kMachineFdCbHost;
m->fds.p[newfd].fd = rc;
rc = newfd;
}
} else if ((i = MachineFdAdd(&m->fds)) != -1) {
if ((rc = dup(fd)) != -1) {
m->fds.p[i].cb = &kMachineFdCbHost;
m->fds.p[i].fd = rc;
rc = i;
}
} else {
rc = -1;
}
return rc;
}
static int OpSocket(struct Machine *m, int family, int type, int protocol) {
int i, fd;
if ((family = XlatSocketFamily(family)) == -1) return -1;
if ((type = XlatSocketType(type)) == -1) return -1;
if ((protocol = XlatSocketProtocol(protocol)) == -1) return -1;
if ((i = MachineFdAdd(&m->fds)) == -1) return -1;
if ((fd = socket(family, type, protocol)) != -1) {
m->fds.p[i].cb = &kMachineFdCbHost;
m->fds.p[i].fd = fd;
fd = i;
} else {
MachineFdRemove(&m->fds, i);
}
return fd;
}
static int OpAccept4(struct Machine *m, int fd, int64_t addraddr,
int64_t addrsizeaddr, int flags) {
int i, rc;
void *addr;
uint8_t b[4];
uint32_t addrsize;
if ((fd = XlatFd(m, fd)) == -1) return -1;
VirtualSendRead(m, b, addrsizeaddr, 4);
addrsize = Read32(b);
if (!(addr = malloc(addrsize))) return -1;
if ((i = rc = MachineFdAdd(&m->fds)) != -1) {
if ((rc = accept4(fd, addr, &addrsize, XlatSocketFlags(flags))) != -1) {
Write32(b, addrsize);
VirtualRecv(m, addrsizeaddr, b, 4);
VirtualRecvWrite(m, addraddr, addr, addrsize);
m->fds.p[i].cb = &kMachineFdCbHost;
m->fds.p[i].fd = rc;
rc = i;
} else {
MachineFdRemove(&m->fds, i);
}
}
free(addr);
return rc;
}
static int OpConnectBind(struct Machine *m, int fd, intptr_t addraddr,
uint32_t addrsize,
int impl(int, const void *, uint32_t)) {
int rc;
void *addr;
if ((fd = XlatFd(m, fd)) == -1) return -1;
if (!(addr = malloc(addrsize))) return -1;
VirtualSendRead(m, addr, addraddr, addrsize);
rc = impl(fd, addr, addrsize);
free(addr);
return rc;
}
static int OpBind(struct Machine *m, int fd, intptr_t addraddr,
uint32_t addrsize) {
return OpConnectBind(m, fd, addraddr, addrsize, bind);
}
static int OpConnect(struct Machine *m, int fd, int64_t addraddr,
uint32_t addrsize) {
return OpConnectBind(m, fd, addraddr, addrsize, connect);
}
static int OpSetsockopt(struct Machine *m, int fd, int level, int optname,
int64_t optvaladdr, uint32_t optvalsize) {
int rc;
void *optval;
if ((level = XlatSocketLevel(level)) == -1) return -1;
if ((optname = XlatSocketOptname(optname)) == -1) return -1;
if ((fd = XlatFd(m, fd)) == -1) return -1;
if (!(optval = malloc(optvalsize))) return -1;
VirtualSendRead(m, optval, optvaladdr, optvalsize);
rc = setsockopt(fd, level, optname, optval, optvalsize);
free(optval);
return rc;
}
static ssize_t OpRead(struct Machine *m, int fd, int64_t addr, size_t size) {
ssize_t rc;
struct Iovs iv;
InitIovs(&iv);
if ((0 <= fd && fd < m->fds.i) && m->fds.p[fd].cb) {
if ((rc = AppendIovsReal(m, &iv, addr, size)) != -1) {
if ((rc = m->fds.p[fd].cb->readv(m->fds.p[fd].fd, iv.p, iv.i)) != -1) {
SetWriteAddr(m, addr, rc);
}
}
} else {
rc = ebadf();
}
FreeIovs(&iv);
return rc;
}
static ssize_t OpPread(struct Machine *m, int fd, int64_t addr, size_t size,
int64_t offset) {
ssize_t rc;
struct Iovs iv;
InitIovs(&iv);
if ((rc = XlatFd(m, fd)) != -1) {
fd = rc;
if ((rc = AppendIovsReal(m, &iv, addr, size)) != -1) {
if ((rc = preadv(fd, iv.p, iv.i, offset)) != -1) {
SetWriteAddr(m, addr, rc);
}
}
}
FreeIovs(&iv);
return rc;
}
static ssize_t OpWrite(struct Machine *m, int fd, int64_t addr, size_t size) {
ssize_t rc;
struct Iovs iv;
InitIovs(&iv);
if ((0 <= fd && fd < m->fds.i) && m->fds.p[fd].cb) {
if ((rc = AppendIovsReal(m, &iv, addr, size)) != -1) {
if ((rc = m->fds.p[fd].cb->writev(m->fds.p[fd].fd, iv.p, iv.i)) != -1) {
SetReadAddr(m, addr, rc);
} else {
VERBOSEF("write(%d [%d], %p, %zu) failed: %s", fd, m->fds.p[fd].fd,
addr, size, strerror(errno));
}
}
} else {
VERBOSEF("write(%d, %p, %zu) bad fd", fd, addr, size);
rc = ebadf();
}
FreeIovs(&iv);
return rc;
}
static ssize_t OpPwrite(struct Machine *m, int fd, int64_t addr, size_t size,
int64_t offset) {
ssize_t rc;
struct Iovs iv;
InitIovs(&iv);
if ((rc = XlatFd(m, fd)) != -1) {
fd = rc;
if ((rc = AppendIovsReal(m, &iv, addr, size)) != -1) {
if ((rc = pwritev(fd, iv.p, iv.i, offset)) != -1) {
SetReadAddr(m, addr, rc);
}
}
}
FreeIovs(&iv);
return rc;
}
static int IoctlTiocgwinsz(struct Machine *m, int fd, int64_t addr,
int (*fn)(int, uint64_t, void *)) {
int rc;
struct winsize ws;
if ((rc = fn(fd, TIOCGWINSZ, &ws)) != -1) {
VirtualRecvWrite(m, addr, &ws, sizeof(ws));
}
return rc;
}
static int IoctlTcgets(struct Machine *m, int fd, int64_t addr,
int (*fn)(int, uint64_t, void *)) {
int rc;
struct termios tio, tio2;
if ((rc = fn(fd, TCGETS, &tio)) != -1) {
memcpy(&tio2, &tio, sizeof(tio));
tio2.c_iflag = 0;
if (tio.c_lflag & ISIG) tio2.c_lflag |= ISIG_LINUX;
if (tio.c_lflag & ICANON) tio2.c_lflag |= ICANON_LINUX;
if (tio.c_lflag & ECHO) tio2.c_lflag |= ECHO_LINUX;
tio2.c_oflag = 0;
if (tio.c_oflag & OPOST) tio2.c_oflag |= OPOST_LINUX;
VirtualRecvWrite(m, addr, &tio2, sizeof(tio2));
}
return rc;
}
static int IoctlTcsets(struct Machine *m, int fd, int64_t request, int64_t addr,
int (*fn)(int, uint64_t, void *)) {
struct termios tio, tio2;
VirtualSendRead(m, &tio, addr, sizeof(tio));
memcpy(&tio2, &tio, sizeof(tio));
tio2.c_iflag = 0;
if (tio.c_lflag & ISIG_LINUX) tio2.c_lflag |= ISIG;
if (tio.c_lflag & ICANON_LINUX) tio2.c_lflag |= ICANON;
if (tio.c_lflag & ECHO_LINUX) tio2.c_lflag |= ECHO;
tio2.c_oflag = 0;
if (tio.c_oflag & OPOST_LINUX) tio2.c_oflag |= OPOST;
return fn(fd, request, &tio2);
}
static int OpIoctl(struct Machine *m, int fd, uint64_t request, int64_t addr) {
int (*fn)(int, uint64_t, void *);
if (!(0 <= fd && fd < m->fds.i) || !m->fds.p[fd].cb) return ebadf();
fn = m->fds.p[fd].cb->ioctl;
fd = m->fds.p[fd].fd;
switch (request) {
case TIOCGWINSZ_LINUX:
return IoctlTiocgwinsz(m, fd, addr, fn);
case TCGETS_LINUX:
return IoctlTcgets(m, fd, addr, fn);
case TCSETS_LINUX:
return IoctlTcsets(m, fd, TCSETS, addr, fn);
case TCSETSW_LINUX:
return IoctlTcsets(m, fd, TCSETSW, addr, fn);
case TCSETSF_LINUX:
return IoctlTcsets(m, fd, TCSETSF, addr, fn);
default:
return einval();
}
}
static ssize_t OpReadv(struct Machine *m, int fd, int64_t iovaddr, int iovlen) {
ssize_t rc;
struct Iovs iv;
InitIovs(&iv);
if ((0 <= fd && fd < m->fds.i) && m->fds.p[fd].cb) {
if ((rc = AppendIovsGuest(m, &iv, iovaddr, iovlen)) != -1) {
rc = m->fds.p[fd].cb->readv(m->fds.p[fd].fd, iv.p, iv.i);
}
} else {
rc = ebadf();
}
FreeIovs(&iv);
return rc;
}
static ssize_t OpWritev(struct Machine *m, int fd, int64_t iovaddr,
int iovlen) {
ssize_t rc;
struct Iovs iv;
InitIovs(&iv);
if ((0 <= fd && fd < m->fds.i) && m->fds.p[fd].cb) {
if ((rc = AppendIovsGuest(m, &iv, iovaddr, iovlen)) != -1) {
rc = m->fds.p[fd].cb->writev(m->fds.p[fd].fd, iv.p, iv.i);
}
} else {
rc = ebadf();
}
FreeIovs(&iv);
return rc;
}
static int64_t OpLseek(struct Machine *m, int fd, int64_t offset, int whence) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
return lseek(fd, offset, whence);
}
static ssize_t OpFtruncate(struct Machine *m, int fd, int64_t size) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
return ftruncate(fd, size);
}
static int OpFaccessat(struct Machine *m, int dirfd, int64_t path, int mode,
int flags) {
flags = XlatAtf(flags);
mode = XlatAccess(mode);
if ((dirfd = XlatAfd(m, dirfd)) == -1) return -1;
return faccessat(dirfd, LoadStr(m, path), mode, flags);
}
static int OpFstatat(struct Machine *m, int dirfd, int64_t path, int64_t staddr,
int flags) {
int rc;
struct stat st;
flags = XlatAtf(flags);
if ((dirfd = XlatAfd(m, dirfd)) == -1) return -1;
if ((rc = fstatat(dirfd, LoadStr(m, path), &st, flags)) != -1) {
VirtualRecvWrite(m, staddr, &st, sizeof(struct stat));
}
return rc;
}
static int OpFstat(struct Machine *m, int fd, int64_t staddr) {
int rc;
struct stat st;
if ((fd = XlatFd(m, fd)) == -1) return -1;
if ((rc = fstat(fd, &st)) != -1) {
VirtualRecvWrite(m, staddr, &st, sizeof(struct stat));
}
return rc;
}
static int OpListen(struct Machine *m, int fd, int backlog) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
return listen(fd, backlog);
}
static int OpShutdown(struct Machine *m, int fd, int how) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
return shutdown(fd, how);
}
static int OpFsync(struct Machine *m, int fd) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
return fsync(fd);
}
static int OpFdatasync(struct Machine *m, int fd) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
return fdatasync(fd);
}
static int OpFchmod(struct Machine *m, int fd, uint32_t mode) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
return fchmod(fd, mode);
}
static int OpFcntl(struct Machine *m, int fd, int cmd, int arg) {
if ((cmd = XlatFcntlCmd(cmd)) == -1) return -1;
if ((arg = XlatFcntlArg(arg)) == -1) return -1;
if ((fd = XlatFd(m, fd)) == -1) return -1;
return fcntl(fd, cmd, arg);
}
static int OpFadvise(struct Machine *m, int fd, uint64_t offset, uint64_t len,
int advice) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
if ((advice = XlatAdvice(advice)) == -1) return -1;
return fadvise(fd, offset, len, advice);
}
static int OpFlock(struct Machine *m, int fd, int lock) {
if ((fd = XlatFd(m, fd)) == -1) return -1;
if ((lock = XlatLock(lock)) == -1) return -1;
return flock(fd, lock);
}
static int OpChdir(struct Machine *m, int64_t path) {
return chdir(LoadStr(m, path));
}
static int OpMkdir(struct Machine *m, int64_t path, int mode) {
return mkdir(LoadStr(m, path), mode);
}
static int OpMknod(struct Machine *m, int64_t path, uint32_t mode,
uint64_t dev) {
return mknod(LoadStr(m, path), mode, dev);
}
static int OpRmdir(struct Machine *m, int64_t path) {
return rmdir(LoadStr(m, path));
}
static int OpUnlink(struct Machine *m, int64_t path) {
return unlink(LoadStr(m, path));
}
static int OpRename(struct Machine *m, int64_t src, int64_t dst) {
return rename(LoadStr(m, src), LoadStr(m, dst));
}
static int OpTruncate(struct Machine *m, int64_t path, uint64_t length) {
return truncate(LoadStr(m, path), length);
}
static int OpLink(struct Machine *m, int64_t existingpath, int64_t newpath) {
return link(LoadStr(m, existingpath), LoadStr(m, newpath));
}
static int OpSymlink(struct Machine *m, int64_t target, int64_t linkpath) {
return symlink(LoadStr(m, target), LoadStr(m, linkpath));
}
static int OpChmod(struct Machine *m, int64_t path, uint32_t mode) {
return chmod(LoadStr(m, path), mode);
}
static int OpFork(struct Machine *m) {
return enosys();
}
static int OpExecve(struct Machine *m, int64_t programaddr, int64_t argvaddr,
int64_t envpaddr) {
return enosys();
}
static int OpWait4(struct Machine *m, int pid, int64_t opt_out_wstatus_addr,
int options, int64_t opt_out_rusage_addr) {
int rc;
int32_t wstatus;
struct rusage rusage;
if ((options = XlatWait(options)) == -1) return -1;
if ((rc = wait4(pid, &wstatus, options, &rusage)) != -1) {
if (opt_out_wstatus_addr) {
VirtualRecvWrite(m, opt_out_wstatus_addr, &wstatus, sizeof(wstatus));
}
if (opt_out_rusage_addr) {
VirtualRecvWrite(m, opt_out_rusage_addr, &rusage, sizeof(rusage));
}
}
return rc;
}
static int OpGetrusage(struct Machine *m, int resource, int64_t rusageaddr) {
int rc;
struct rusage rusage;
if ((resource = XlatRusage(resource)) == -1) return -1;
if ((rc = getrusage(resource, &rusage)) != -1) {
VirtualRecvWrite(m, rusageaddr, &rusage, sizeof(rusage));
}
return rc;
}
static int OpGetrlimit(struct Machine *m, int resource, int64_t rlimitaddr) {
return enosys();
}
static int64_t OpGetcwd(struct Machine *m, int64_t bufaddr, size_t size) {
size_t n;
char *buf;
int64_t res;
size = MIN(size, PATH_MAX);
if (!(buf = malloc(size))) return enomem();
if ((getcwd)(buf, size)) {
n = strlen(buf);
VirtualRecvWrite(m, bufaddr, buf, n);
res = bufaddr;
} else {
res = -1;
}
free(buf);
return res;
}
static int OpSigaction(struct Machine *m, int sig, int64_t act, int64_t old) {
return 0;
int rc;
struct OpSigactionMemory {
struct sigaction act, old;
uint8_t b[sizeof(struct sigaction$linux)];
void *p[2];
} * mem;
if (!(mem = malloc(sizeof(*mem)))) return enomem();
if ((rc = sigaction(
XlatSignal(sig),
CoerceSigactionToCosmo(
&mem->act, LoadBuf(m, act, sizeof(struct sigaction$linux))),
&mem->old)) != -1) {
CoerceSigactionToLinux(BeginStoreNp(m, old, sizeof(mem->b), mem->p, mem->b),
&mem->old);
EndStoreNp(m, old, sizeof(mem->b), mem->p, mem->b);
}
free(mem);
return rc;
}
static int OpNanosleep(struct Machine *m, int64_t req, int64_t rem) {
int rc;
void *p[2];
uint8_t b[sizeof(struct timespec)];
if ((rc = nanosleep(LoadBuf(m, req, sizeof(b)),
BeginStoreNp(m, rem, sizeof(b), p, b))) != -1) {
EndStoreNp(m, rem, sizeof(b), p, b);
}
return rc;
}
static int OpSigsuspend(struct Machine *m, int64_t maskaddr) {
void *p;
sigset_t mask;
if (!(p = LoadBuf(m, maskaddr, 8))) return efault();
memset(&mask, 0, sizeof(mask));
memcpy(&mask, p, 8);
return sigsuspend(&mask);
}
static int OpClockGettime(struct Machine *m, int clockid, int64_t ts) {
int rc;
void *tsp[2];
uint8_t tsb[sizeof(struct timespec)];
if ((rc = clock_gettime(XlatClock(clockid),
BeginStoreNp(m, ts, sizeof(tsb), tsp, tsb))) != -1) {
EndStoreNp(m, ts, sizeof(tsb), tsp, tsb);
}
return rc;
}
static int OpGettimeofday(struct Machine *m, int64_t tv, int64_t tz) {
int rc;
void *tvp[2], *tzp[2];
uint8_t tvb[sizeof(struct timeval)];
uint8_t tzb[sizeof(struct timezone)];
if ((rc = gettimeofday(BeginStoreNp(m, tv, sizeof(tvb), tvp, tvb),
BeginStoreNp(m, tz, sizeof(tzb), tzp, tzb))) != -1) {
EndStoreNp(m, tv, sizeof(tvb), tvp, tvb);
EndStoreNp(m, tz, sizeof(tzb), tzp, tzb);
}
return rc;
}
static int OpPoll(struct Machine *m, int64_t fdsaddr, uint64_t nfds,
int32_t timeout_ms) {
int count, i;
uint64_t fdssize;
struct pollfd *hostfds, *guestfds;
if (!__builtin_mul_overflow(nfds, sizeof(struct pollfd), &fdssize) &&
fdssize <= 0x7ffff000) {
hostfds = malloc(fdssize);
guestfds = malloc(fdssize);
if (hostfds && guestfds) {
VirtualSendRead(m, guestfds, fdsaddr, fdssize);
memcpy(hostfds, guestfds, fdssize);
for (i = 0; i < nfds; ++i) {
hostfds[i].fd = XlatFd(m, hostfds[i].fd);
}
if ((count = poll(hostfds, nfds, timeout_ms)) != -1) {
for (i = 0; i < count; ++i) {
hostfds[i].fd = guestfds[i].fd;
}
VirtualRecvWrite(m, fdsaddr, hostfds, count * sizeof(struct pollfd));
}
} else {
count = enomem();
}
free(guestfds);
free(hostfds);
} else {
count = einval();
}
return count;
}
static int OpSigprocmask(struct Machine *m, int how, int64_t setaddr,
int64_t oldsetaddr) {
int rc;
sigset_t *set, oldset, ss;
if (setaddr) {
set = &ss;
memset(set, 0, sizeof(ss));
VirtualSendRead(m, set, setaddr, 8);
} else {
set = NULL;
}
if ((rc = sigprocmask(XlatSig(how), set, &oldset)) != -1) {
if (setaddr) VirtualRecvWrite(m, setaddr, set, 8);
if (oldsetaddr) VirtualRecvWrite(m, oldsetaddr, &oldset, 8);
}
return rc;
}
static int OpGetPid(struct Machine *m) {
return getpid();
}
static int OpGetPpid(struct Machine *m) {
return getppid();
}
static int OpKill(struct Machine *m, int pid, int sig) {
if (pid == getpid()) {
ThrowProtectionFault(m);
} else {
return kill(pid, sig);
}
}
static int OpGetUid(struct Machine *m) {
return getuid();
}
static int OpGetGid(struct Machine *m) {
return getgid();
}
static int OpGetTid(struct Machine *m) {
return gettid();
}
static int OpSchedYield(struct Machine *m) {
return sched_yield();
}
static int OpAlarm(struct Machine *m, unsigned seconds) {
return alarm(seconds);
}
static int OpPause(struct Machine *m) {
return pause();
}
static int DoOpen(struct Machine *m, int64_t path, int flags, int mode) {
return OpOpenat(m, AT_FDCWD_LINUX, path, flags, mode);
}
static int DoCreat(struct Machine *m, int64_t file, int mode) {
return DoOpen(m, file, 0x241, mode);
}
static int DoAccess(struct Machine *m, int64_t path, int mode) {
return OpFaccessat(m, AT_FDCWD_LINUX, path, mode, 0);
}
static int DoStat(struct Machine *m, int64_t path, int64_t st) {
return OpFstatat(m, AT_FDCWD_LINUX, path, st, 0);
}
static int DoLstat(struct Machine *m, int64_t path, int64_t st) {
return OpFstatat(m, AT_FDCWD_LINUX, path, st, 0x0400);
}
static int DoAccept(struct Machine *m, int fd, int64_t addraddr,
int64_t addrsizeaddr) {
return OpAccept4(m, fd, addraddr, addrsizeaddr, 0);
}
void OpSyscall(struct Machine *m, uint32_t rde) {
uint64_t i, ax, di, si, dx, r0, r8, r9;
ax = Read64(m->ax);
di = Read64(m->di);
si = Read64(m->si);
dx = Read64(m->dx);
r0 = Read64(m->r10);
r8 = Read64(m->r8);
r9 = Read64(m->r9);
switch (ax & 0x1ff) {
SYSCALL(0x000, OpRead(m, di, si, dx));
SYSCALL(0x001, OpWrite(m, di, si, dx));
SYSCALL(0x002, DoOpen(m, di, si, dx));
SYSCALL(0x003, OpClose(m, di));
SYSCALL(0x004, DoStat(m, di, si));
SYSCALL(0x005, OpFstat(m, di, si));
SYSCALL(0x006, DoLstat(m, di, si));
SYSCALL(0x007, OpPoll(m, di, si, dx));
SYSCALL(0x008, OpLseek(m, di, si, dx));
SYSCALL(0x009, OpMmap(m, di, si, dx, r0, r8, r9));
SYSCALL(0x01A, OpMsync(m, di, si, dx));
SYSCALL(0x00A, OpMprotect(m, di, si, dx));
SYSCALL(0x00B, OpMunmap(m, di, si));
SYSCALL(0x00C, OpBrk(m, di));
SYSCALL(0x00D, OpSigaction(m, di, si, dx));
SYSCALL(0x00E, OpSigprocmask(m, di, si, dx));
SYSCALL(0x010, OpIoctl(m, di, si, dx));
SYSCALL(0x011, OpPread(m, di, si, dx, r0));
SYSCALL(0x012, OpPwrite(m, di, si, dx, r0));
SYSCALL(0x013, OpReadv(m, di, si, dx));
SYSCALL(0x014, OpWritev(m, di, si, dx));
SYSCALL(0x015, DoAccess(m, di, si));
SYSCALL(0x016, OpPipe(m, di));
SYSCALL(0x017, select(di, P(si), P(dx), P(r0), P(r8)));
SYSCALL(0x018, OpSchedYield(m));
SYSCALL(0x01C, OpMadvise(m, di, si, dx));
SYSCALL(0x020, OpDup(m, di));
SYSCALL(0x021, OpDup2(m, di, si));
SYSCALL(0x022, OpPause(m));
SYSCALL(0x023, OpNanosleep(m, di, si));
SYSCALL(0x024, getitimer(di, PNN(si)));
SYSCALL(0x025, OpAlarm(m, di));
SYSCALL(0x026, setitimer(di, PNN(si), P(dx)));
SYSCALL(0x027, OpGetPid(m));
SYSCALL(0x028, sendfile(di, si, P(dx), r0));
SYSCALL(0x029, OpSocket(m, di, si, dx));
SYSCALL(0x02A, OpConnect(m, di, si, dx));
SYSCALL(0x02B, DoAccept(m, di, di, dx));
SYSCALL(0x02C, sendto(di, PNN(si), dx, r0, P(r8), r9));
SYSCALL(0x02D, recvfrom(di, P(si), dx, r0, P(r8), P(r9)));
SYSCALL(0x030, OpShutdown(m, di, si));
SYSCALL(0x031, OpBind(m, di, si, dx));
SYSCALL(0x032, OpListen(m, di, si));
SYSCALL(0x033, getsockname(di, PNN(si), PNN(dx)));
SYSCALL(0x034, getpeername(di, PNN(si), PNN(dx)));
SYSCALL(0x036, OpSetsockopt(m, di, si, dx, r0, r8));
SYSCALL(0x037, getsockopt(di, si, dx, PNN(r0), PNN(r8)));
SYSCALL(0x039, OpFork(m));
SYSCALL(0x03B, OpExecve(m, di, si, dx));
SYSCALL(0x03D, OpWait4(m, di, si, dx, r0));
SYSCALL(0x03E, OpKill(m, di, si));
SYSCALL(0x03F, uname(P(di)));
SYSCALL(0x048, OpFcntl(m, di, si, dx));
SYSCALL(0x049, OpFlock(m, di, si));
SYSCALL(0x04A, OpFsync(m, di));
SYSCALL(0x04B, OpFdatasync(m, di));
SYSCALL(0x04C, OpTruncate(m, di, si));
SYSCALL(0x04D, OpFtruncate(m, di, si));
SYSCALL(0x04F, OpGetcwd(m, di, si));
SYSCALL(0x050, OpChdir(m, di));
SYSCALL(0x052, OpRename(m, di, si));
SYSCALL(0x053, OpMkdir(m, di, si));
SYSCALL(0x054, OpRmdir(m, di));
SYSCALL(0x055, DoCreat(m, di, si));
SYSCALL(0x056, OpLink(m, di, si));
SYSCALL(0x057, OpUnlink(m, di));
SYSCALL(0x058, OpSymlink(m, di, si));
SYSCALL(0x05A, OpChmod(m, di, si));
SYSCALL(0x05B, OpFchmod(m, di, si));
SYSCALL(0x060, OpGettimeofday(m, di, si));
SYSCALL(0x061, OpGetrlimit(m, di, si));
SYSCALL(0x062, OpGetrusage(m, di, si));
SYSCALL(0x063, sysinfo(PNN(di)));
SYSCALL(0x064, times(PNN(di)));
SYSCALL(0x066, OpGetUid(m));
SYSCALL(0x068, OpGetGid(m));
SYSCALL(0x06E, OpGetPpid(m));
SYSCALL(0x075, setresuid(di, si, dx));
SYSCALL(0x077, setresgid(di, si, dx));
SYSCALL(0x082, OpSigsuspend(m, di));
SYSCALL(0x085, OpMknod(m, di, si, dx));
SYSCALL(0x08C, getpriority(di, si));
SYSCALL(0x08D, setpriority(di, si, dx));
SYSCALL(0x0A0, setrlimit(di, P(si)));
SYSCALL(0x084, utime(PNN(di), PNN(si)));
SYSCALL(0x0EB, utimes(P(di), P(si)));
SYSCALL(0x09E, OpArchPrctl(m, di, si));
SYSCALL(0x0BA, OpGetTid(m));
SYSCALL(0x0CB, sched_setaffinity(di, si, P(dx)));
SYSCALL(0x0DD, OpFadvise(m, di, si, dx, r0));
SYSCALL(0x0E4, OpClockGettime(m, di, si));
SYSCALL(0x101, OpOpenat(m, di, si, dx, r0));
SYSCALL(0x102, mkdirat(XlatAfd(m, di), P(si), dx));
SYSCALL(0x104, fchownat(XlatAfd(m, di), P(si), dx, r0, XlatAtf(r8)));
SYSCALL(0x105, futimesat(XlatAfd(m, di), P(si), P(dx)));
SYSCALL(0x106, OpFstatat(m, di, si, dx, r0));
SYSCALL(0x107, unlinkat(XlatAfd(m, di), P(si), XlatAtf(dx)));
SYSCALL(0x108, renameat(XlatAfd(m, di), P(si), XlatAfd(m, dx), P(r0)));
SYSCALL(0x10D, OpFaccessat(m, di, si, dx, r0));
SYSCALL(0x113, splice(di, P(si), dx, P(r0), r8, XlatAtf(r9)));
SYSCALL(0x115, sync_file_range(di, si, dx, XlatAtf(r0)));
SYSCALL(0x118, utimensat(XlatAfd(m, di), P(si), P(dx), XlatAtf(r0)));
SYSCALL(0x120, OpAccept4(m, di, si, dx, r0));
SYSCALL(0x177, vmsplice(di, P(si), dx, r0));
CASE(0xE7, HaltMachine(m, di | 0x100));
default:
VERBOSEF("missing syscall 0x%03x", ax);
ax = enosys();
break;
}
Write64(m->ax, ax != -1 ? ax : -(XlatErrno(errno) & 0xfff));
for (i = 0; i < m->freelist.i; ++i) free(m->freelist.p[i]);
m->freelist.i = 0;
}