185 lines
5.3 KiB
C
185 lines
5.3 KiB
C
/* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
/*
|
|
* See comments in atan.c.
|
|
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
|
|
*/
|
|
|
|
#include "libc/math/libm.h"
|
|
|
|
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
|
long double atanl(long double x)
|
|
{
|
|
return atan(x);
|
|
}
|
|
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
|
|
|
#if LDBL_MANT_DIG == 64
|
|
#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | (u.i.m>>55 & 0xff))
|
|
|
|
static const long double atanhi[] = {
|
|
4.63647609000806116202e-01L,
|
|
7.85398163397448309628e-01L,
|
|
9.82793723247329067960e-01L,
|
|
1.57079632679489661926e+00L,
|
|
};
|
|
|
|
static const long double atanlo[] = {
|
|
1.18469937025062860669e-20L,
|
|
-1.25413940316708300586e-20L,
|
|
2.55232234165405176172e-20L,
|
|
-2.50827880633416601173e-20L,
|
|
};
|
|
|
|
static const long double aT[] = {
|
|
3.33333333333333333017e-01L,
|
|
-1.99999999999999632011e-01L,
|
|
1.42857142857046531280e-01L,
|
|
-1.11111111100562372733e-01L,
|
|
9.09090902935647302252e-02L,
|
|
-7.69230552476207730353e-02L,
|
|
6.66661718042406260546e-02L,
|
|
-5.88158892835030888692e-02L,
|
|
5.25499891539726639379e-02L,
|
|
-4.70119845393155721494e-02L,
|
|
4.03539201366454414072e-02L,
|
|
-2.91303858419364158725e-02L,
|
|
1.24822046299269234080e-02L,
|
|
};
|
|
|
|
static long double T_even(long double x)
|
|
{
|
|
return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] +
|
|
x * (aT[8] + x * (aT[10] + x * aT[12])))));
|
|
}
|
|
|
|
static long double T_odd(long double x)
|
|
{
|
|
return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] +
|
|
x * (aT[9] + x * aT[11]))));
|
|
}
|
|
#elif LDBL_MANT_DIG == 113
|
|
#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | u.i.top>>8)
|
|
|
|
static const long double atanhi[] = {
|
|
4.63647609000806116214256231461214397e-01L,
|
|
7.85398163397448309615660845819875699e-01L,
|
|
9.82793723247329067985710611014666038e-01L,
|
|
1.57079632679489661923132169163975140e+00L,
|
|
};
|
|
|
|
static const long double atanlo[] = {
|
|
4.89509642257333492668618435220297706e-36L,
|
|
2.16795253253094525619926100651083806e-35L,
|
|
-2.31288434538183565909319952098066272e-35L,
|
|
4.33590506506189051239852201302167613e-35L,
|
|
};
|
|
|
|
static const long double aT[] = {
|
|
3.33333333333333333333333333333333125e-01L,
|
|
-1.99999999999999999999999999999180430e-01L,
|
|
1.42857142857142857142857142125269827e-01L,
|
|
-1.11111111111111111111110834490810169e-01L,
|
|
9.09090909090909090908522355708623681e-02L,
|
|
-7.69230769230769230696553844935357021e-02L,
|
|
6.66666666666666660390096773046256096e-02L,
|
|
-5.88235294117646671706582985209643694e-02L,
|
|
5.26315789473666478515847092020327506e-02L,
|
|
-4.76190476189855517021024424991436144e-02L,
|
|
4.34782608678695085948531993458097026e-02L,
|
|
-3.99999999632663469330634215991142368e-02L,
|
|
3.70370363987423702891250829918659723e-02L,
|
|
-3.44827496515048090726669907612335954e-02L,
|
|
3.22579620681420149871973710852268528e-02L,
|
|
-3.03020767654269261041647570626778067e-02L,
|
|
2.85641979882534783223403715930946138e-02L,
|
|
-2.69824879726738568189929461383741323e-02L,
|
|
2.54194698498808542954187110873675769e-02L,
|
|
-2.35083879708189059926183138130183215e-02L,
|
|
2.04832358998165364349957325067131428e-02L,
|
|
-1.54489555488544397858507248612362957e-02L,
|
|
8.64492360989278761493037861575248038e-03L,
|
|
-2.58521121597609872727919154569765469e-03L,
|
|
};
|
|
|
|
static long double T_even(long double x)
|
|
{
|
|
return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * (aT[8] +
|
|
x * (aT[10] + x * (aT[12] + x * (aT[14] + x * (aT[16] +
|
|
x * (aT[18] + x * (aT[20] + x * aT[22])))))))))));
|
|
}
|
|
|
|
static long double T_odd(long double x)
|
|
{
|
|
return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] +
|
|
x * (aT[11] + x * (aT[13] + x * (aT[15] + x * (aT[17] +
|
|
x * (aT[19] + x * (aT[21] + x * aT[23])))))))))));
|
|
}
|
|
#endif
|
|
|
|
long double atanl(long double x)
|
|
{
|
|
union ldshape u = {x};
|
|
long double w, s1, s2, z;
|
|
int id;
|
|
unsigned e = u.i.se & 0x7fff;
|
|
unsigned sign = u.i.se >> 15;
|
|
unsigned expman;
|
|
|
|
if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */
|
|
if (isnan(x))
|
|
return x;
|
|
return sign ? -atanhi[3] : atanhi[3];
|
|
}
|
|
/* Extract the exponent and the first few bits of the mantissa. */
|
|
expman = EXPMAN(u);
|
|
if (expman < ((0x3fff - 2) << 8) + 0xc0) { /* |x| < 0.4375 */
|
|
if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) { /* if |x| is small, atanl(x)~=x */
|
|
/* raise underflow if subnormal */
|
|
if (e == 0)
|
|
FORCE_EVAL((float)x);
|
|
return x;
|
|
}
|
|
id = -1;
|
|
} else {
|
|
x = fabsl(x);
|
|
if (expman < (0x3fff << 8) + 0x30) { /* |x| < 1.1875 */
|
|
if (expman < ((0x3fff - 1) << 8) + 0x60) { /* 7/16 <= |x| < 11/16 */
|
|
id = 0;
|
|
x = (2.0*x-1.0)/(2.0+x);
|
|
} else { /* 11/16 <= |x| < 19/16 */
|
|
id = 1;
|
|
x = (x-1.0)/(x+1.0);
|
|
}
|
|
} else {
|
|
if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */
|
|
id = 2;
|
|
x = (x-1.5)/(1.0+1.5*x);
|
|
} else { /* 2.4375 <= |x| */
|
|
id = 3;
|
|
x = -1.0/x;
|
|
}
|
|
}
|
|
}
|
|
/* end of argument reduction */
|
|
z = x*x;
|
|
w = z*z;
|
|
/* break sum aT[i]z**(i+1) into odd and even poly */
|
|
s1 = z*T_even(w);
|
|
s2 = w*T_odd(w);
|
|
if (id < 0)
|
|
return x - x*(s1+s2);
|
|
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
|
return sign ? -z : z;
|
|
}
|
|
#endif
|