cosmopolitan/tool/build/package.c

670 lines
24 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ This program is free software; you can redistribute it and/or modify │
│ it under the terms of the GNU General Public License as published by │
│ the Free Software Foundation; version 2 of the License. │
│ │
│ This program is distributed in the hope that it will be useful, but │
│ WITHOUT ANY WARRANTY; without even the implied warranty of │
│ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │
│ General Public License for more details. │
│ │
│ You should have received a copy of the GNU General Public License │
│ along with this program; if not, write to the Free Software │
│ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │
│ 02110-1301 USA │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/alg/alg.h"
#include "libc/alg/arraylist.internal.h"
#include "libc/alg/bisect.internal.h"
#include "libc/alg/bisectcarleft.internal.h"
#include "libc/assert.h"
#include "libc/bits/bswap.h"
#include "libc/bits/safemacros.internal.h"
#include "libc/calls/calls.h"
#include "libc/calls/struct/stat.h"
#include "libc/elf/def.h"
#include "libc/elf/elf.h"
#include "libc/elf/struct/rela.h"
#include "libc/errno.h"
#include "libc/fmt/conv.h"
#include "libc/log/check.h"
#include "libc/log/log.h"
#include "libc/macros.h"
#include "libc/mem/mem.h"
#include "libc/nexgen32e/bsr.h"
#include "libc/nexgen32e/kompressor.h"
#include "libc/nt/enum/fileflagandattributes.h"
#include "libc/runtime/gc.h"
#include "libc/runtime/runtime.h"
#include "libc/sock/sock.h"
#include "libc/stdio/stdio.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/map.h"
#include "libc/sysv/consts/msync.h"
#include "libc/sysv/consts/o.h"
#include "libc/sysv/consts/prot.h"
#include "libc/time/time.h"
#include "libc/x/x.h"
#include "third_party/getopt/getopt.h"
#include "third_party/xed/x86.h"
#include "third_party/zlib/zlib.h"
#include "tool/build/lib/elfwriter.h"
#include "tool/build/lib/persist.h"
/**
* @fileoverview Build Package Script.
*
* FIRST PURPOSE
*
* This script verifies the well-formedness of dependencies, e.g.
*
* o/tool/build/package.com \
* -o o/libc/stubs/stubs.pkg \
* o/libc/stubs/{a,b,...}.o
*
* o/tool/build/package.com \
* -o o/libc/nexgen32e/nexgen32e.pkg \
* -d o/libc/stubs/stubs.pkg \
* o/libc/nexgen32e/{a,b,...}.o
*
* We want the following:
*
* 1. FOO declares in FOO_DIRECTDEPS where its undefined symbols are.
* 2. FOO_DIRECTDEPS is complete, so FOO FOO_DIRECTDEPS has no UNDEFs.
* 3. FOO_DIRECTDEPS is non-transitive; thus this tool is incremental.
* 4. Package relationships on a whole are acyclic.
*
* These rules help keep the structure of large codebases easy to
* understand. More importantly, it allows us to further optimize
* compiled objects very cheaply as the build progresses.
*
* SECOND PURPOSE
*
* We want all storage to be thread-local storage. So we change
* RIP-relative instructions to be RBX-relative, only when they
* reference sections in the binary mutable after initialization.
*
* This is basically what the Go language does to implement its fiber
* multiprocessing model. We can have this in C by appropriating all the
* work folks put into enriching GNU C with WIN32 and ASLR lool.
*
* THIRD PURPOSE
*
* Compress read-only data sections of particularly low entropy, using
* the most appropriate directly-linked algorithm and then inject code
* into _init() that calls it. If the data is extremely low energy, we
* will inject code for merging page table entries too. The overcommit
* here is limitless.
*/
#define PACKAGE_MAGIC bswap_32(0xBEEFBEEFu)
#define PACKAGE_ABI 1
struct Packages {
size_t i, n;
struct Package {
uint32_t magic;
int32_t abi;
uint32_t path; // pkg->strings.p[path]
int64_t fd; // not persisted
void *addr; // not persisted
size_t size; // not persisted
struct Strings {
size_t i, n;
char *p; // persisted as pkg+RVA
} strings; // TODO(jart): interning?
struct Objects {
size_t i, n;
struct Object {
uint32_t path; // pkg->strings.p[path]
unsigned mode; // not persisted
struct Elf64_Ehdr *elf; // not persisted
size_t size; // not persisted
char *strs; // not persisted
Elf64_Sym *syms; // not persisted
Elf64_Xword symcount; // not persisted
struct Sections {
size_t i, n;
struct Section {
enum SectionKind {
kUndef,
kText,
kData,
kPiroRelo,
kPiroData,
kPiroBss,
kBss,
} kind;
struct Ops {
size_t i, n;
struct Op {
int32_t offset;
uint8_t length;
uint8_t pos_disp;
uint16_t __pad;
} * p;
} ops;
} * p;
} sections; // not persisted
} * p; // persisted as pkg+RVA
} objects;
struct Symbols {
size_t i, n;
struct Symbol {
uint32_t name; // pkg->strings.p[name]
enum SectionKind kind : 8;
uint8_t bind : 4;
uint8_t type : 4;
uint16_t object; // pkg->objects.p[object]
} * p; // persisted as pkg+RVA
} symbols, undefs; // TODO(jart): hash undefs?
} * *p; // persisted across multiple files
};
int CompareSymbolName(const struct Symbol *a, const struct Symbol *b,
const char *strs[hasatleast 2]) {
return strcmp(&strs[0][a->name], &strs[1][b->name]);
}
struct Package *LoadPackage(const char *path) {
int fd;
ssize_t i;
struct stat st;
struct Package *pkg;
CHECK(fileexists(path), "%s: %s: %s\n", "error", path, "not found");
CHECK_NE(-1, (fd = open(path, O_RDONLY)), "%s", path);
CHECK_NE(-1, fstat(fd, &st));
CHECK_NE(MAP_FAILED, (pkg = mmap(NULL, st.st_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0)));
CHECK_NE(-1, close(fd));
CHECK_EQ(PACKAGE_MAGIC, pkg->magic, "corrupt package: %`'s", path);
pkg->strings.p = (char *)((intptr_t)pkg->strings.p + (intptr_t)pkg);
pkg->objects.p = (struct Object *)((intptr_t)pkg->objects.p + (intptr_t)pkg);
pkg->symbols.p = (struct Symbol *)((intptr_t)pkg->symbols.p + (intptr_t)pkg);
CHECK(strcmp(path, &pkg->strings.p[pkg->path]) == 0,
"corrupt package: %`'s pkg=%p strings=%p", path, pkg, pkg->strings.p);
pkg->addr = pkg;
pkg->size = st.st_size;
return pkg;
}
void AddDependency(struct Packages *deps, const char *path) {
struct Package *pkg;
pkg = LoadPackage(path);
CHECK_NE(-1, append(deps, &pkg));
}
void WritePackage(struct Package *pkg) {
CHECK_NE(0, PACKAGE_MAGIC);
pkg->magic = PACKAGE_MAGIC;
pkg->abi = PACKAGE_ABI;
DEBUGF("%s has %,ld objects, %,ld symbols, and a %,ld byte string table",
&pkg->strings.p[pkg->path], pkg->objects.i, pkg->symbols.i,
pkg->strings.i);
PersistObject(
&pkg->strings.p[pkg->path], 64,
&(struct ObjectParam){
sizeof(struct Package),
pkg,
&pkg->magic,
&pkg->abi,
(struct ObjectArrayParam[]){
{pkg->strings.i, sizeof(pkg->strings.p[0]), &pkg->strings.p},
{pkg->objects.i, sizeof(pkg->objects.p[0]), &pkg->objects.p},
{pkg->symbols.i, sizeof(pkg->symbols.p[0]), &pkg->symbols.p},
{0},
},
});
}
void GetOpts(struct Package *pkg, struct Packages *deps, int argc,
char *argv[]) {
long i, si, opt;
pkg->path = -1;
while ((opt = getopt(argc, argv, "vho:d:")) != -1) {
switch (opt) {
case 'v':
g_loglevel = kLogDebug;
break;
case 'o':
pkg->path = concat(&pkg->strings, optarg, strlen(optarg) + 1);
break;
case 'd':
AddDependency(deps, optarg);
break;
default:
fprintf(stderr, "%s: %s [%s %s] [%s %s] %s\n", "Usage",
program_invocation_name, "-o", "OUTPACKAGE", "-d", "DEPPACKAGE",
"OBJECT...");
exit(1);
}
}
CHECK_NE(-1, pkg->path, "no packages passed to package.com");
CHECK_LT(optind, argc,
"no objects passed to package.com; "
"is your foo.mk $(FOO_OBJS) glob broken?");
for (i = optind; i < argc; ++i) {
CHECK_NE(-1, (si = concat(&pkg->strings, argv[i], strlen(argv[i]) + 1)));
CHECK_NE(-1, append(&pkg->objects, (&(struct Object){si})));
}
}
void IndexSections(struct Object *obj) {
size_t i;
struct Op op;
const char *name;
const uint8_t *code;
struct Section sect;
const Elf64_Shdr *shdr;
struct XedDecodedInst xedd;
for (i = 0; i < obj->elf->e_shnum; ++i) {
memset(&sect, 0, sizeof(sect));
CHECK_NOTNULL((shdr = GetElfSectionHeaderAddress(obj->elf, obj->size, i)));
if (shdr->sh_type != SHT_NULL) {
CHECK_NOTNULL((name = GetElfSectionName(obj->elf, obj->size, shdr)));
if (startswith(name, ".sort.")) name += 5;
if ((strcmp(name, ".piro.relo") == 0 ||
startswith(name, ".piro.relo.")) ||
(strcmp(name, ".data.rel.ro") == 0 ||
startswith(name, ".data.rel.ro."))) {
sect.kind = kPiroRelo;
} else if (strcmp(name, ".piro.data") == 0 ||
startswith(name, ".piro.data.")) {
sect.kind = kPiroData;
} else if (strcmp(name, ".piro.bss") == 0 ||
startswith(name, ".piro.bss.")) {
sect.kind = kPiroBss;
} else if (strcmp(name, ".data") == 0 || startswith(name, ".data.")) {
sect.kind = kData;
} else if (strcmp(name, ".bss") == 0 || startswith(name, ".bss.")) {
sect.kind = kBss;
} else {
sect.kind = kText;
}
} else {
sect.kind = kUndef; /* should always and only be section #0 */
}
if (shdr->sh_flags & SHF_EXECINSTR) {
CHECK_NOTNULL((code = GetElfSectionAddress(obj->elf, obj->size, shdr)));
for (op.offset = 0; op.offset < shdr->sh_size; op.offset += op.length) {
if (xed_instruction_length_decode(
xed_decoded_inst_zero_set_mode(&xedd, XED_MACHINE_MODE_LONG_64),
&code[op.offset],
min(shdr->sh_size - op.offset, XED_MAX_INSTRUCTION_BYTES)) ==
XED_ERROR_NONE) {
op.length = xedd.length;
op.pos_disp = xedd.op.pos_disp;
} else {
op.length = 1;
op.pos_disp = 0;
}
CHECK_NE(-1, append(&sect.ops, &op));
}
}
CHECK_NE(-1, append(&obj->sections, &sect));
}
}
enum SectionKind ClassifySection(struct Object *obj, uint8_t type,
Elf64_Section shndx) {
if (type == STT_COMMON) return kBss;
if (!obj->sections.i) return kText;
return obj->sections.p[min(max(0, shndx), obj->sections.i - 1)].kind;
}
void LoadSymbols(struct Package *pkg, uint32_t object) {
Elf64_Xword i;
const char *name;
struct Object *obj;
struct Symbol symbol;
obj = &pkg->objects.p[object];
symbol.object = object;
for (i = 0; i < obj->symcount; ++i) {
symbol.bind = ELF64_ST_BIND(obj->syms[i].st_info);
symbol.type = ELF64_ST_TYPE(obj->syms[i].st_info);
if (symbol.bind != STB_LOCAL &&
(symbol.type == STT_OBJECT || symbol.type == STT_FUNC ||
symbol.type == STT_COMMON || symbol.type == STT_NOTYPE)) {
name = GetElfString(obj->elf, obj->size, obj->strs, obj->syms[i].st_name);
DEBUGF("%s", name);
if (strcmp(name, "_GLOBAL_OFFSET_TABLE_") != 0) {
symbol.kind = ClassifySection(obj, symbol.type, obj->syms[i].st_shndx);
CHECK_NE(-1,
(symbol.name = concat(&pkg->strings, name, strlen(name) + 1)));
CHECK_NE(-1,
append(symbol.kind != kUndef ? &pkg->symbols : &pkg->undefs,
&symbol));
}
}
}
}
void OpenObject(struct Package *pkg, struct Object *obj, int mode, int prot,
int flags) {
int fd;
struct stat st;
CHECK_NE(-1, (fd = open(&pkg->strings.p[obj->path], (obj->mode = mode))),
"path=%`'s", &pkg->strings.p[obj->path]);
CHECK_NE(-1, fstat(fd, &st));
CHECK_NE(MAP_FAILED, (obj->elf = mmap(NULL, (obj->size = st.st_size), prot,
flags, fd, 0)));
CHECK_NE(-1, close(fd));
CHECK(IsElf64Binary(obj->elf, obj->size), "path=%`'s",
&pkg->strings.p[obj->path]);
CHECK_NOTNULL((obj->strs = GetElfStringTable(obj->elf, obj->size)));
CHECK_NOTNULL(
(obj->syms = GetElfSymbolTable(obj->elf, obj->size, &obj->symcount)));
CHECK_NE(0, obj->symcount);
IndexSections(obj);
}
void CloseObject(struct Object *obj) {
if ((obj->mode & O_ACCMODE) != O_RDONLY) {
CHECK_NE(-1, msync(obj->elf, obj->size, MS_ASYNC | MS_INVALIDATE));
}
CHECK_NE(-1, munmap(obj->elf, obj->size));
}
void LoadObjects(struct Package *pkg) {
size_t i;
struct Object *obj;
for (i = 0; i < pkg->objects.i; ++i) {
obj = &pkg->objects.p[i];
OpenObject(pkg, obj, O_RDONLY, PROT_READ, MAP_SHARED);
LoadSymbols(pkg, i);
CloseObject(obj);
}
qsort_r(&pkg->symbols.p[0], pkg->symbols.i, sizeof(pkg->symbols.p[0]),
(void *)CompareSymbolName,
(const char *[2]){pkg->strings.p, pkg->strings.p});
}
bool FindSymbol(const char *name, struct Package *pkg,
struct Packages *directdeps, struct Package **out_pkg,
struct Symbol **out_sym) {
size_t i;
struct Package *dep;
struct Symbol key, *sym;
key.name = 0;
if ((sym = bisect(&key, &pkg->symbols.p[0], pkg->symbols.i,
sizeof(pkg->symbols.p[0]), (void *)CompareSymbolName,
(const char *[2]){name, pkg->strings.p}))) {
if (out_pkg) *out_pkg = pkg;
if (out_sym) *out_sym = sym;
return true;
}
for (i = 0; i < directdeps->i; ++i) {
dep = directdeps->p[i];
if ((sym = bisect(&key, &dep->symbols.p[0], dep->symbols.i,
sizeof(dep->symbols.p[0]), (void *)CompareSymbolName,
(const char *[2]){name, dep->strings.p}))) {
if (out_pkg) *out_pkg = dep;
if (out_sym) *out_sym = sym;
return true;
}
}
return false;
}
void CheckStrictDeps(struct Package *pkg, struct Packages *deps) {
size_t i, j;
struct Package *dep;
struct Symbol *undef;
for (i = 0; i < pkg->undefs.i; ++i) {
undef = &pkg->undefs.p[i];
if (undef->bind == STB_WEAK) continue;
if (!FindSymbol(&pkg->strings.p[undef->name], pkg, deps, NULL, NULL)) {
fprintf(stderr, "%s: %s (%s) %s %s\n", "error",
&pkg->strings.p[undef->name],
&pkg->strings.p[pkg->objects.p[undef->object].path],
"not defined by direct deps of", &pkg->strings.p[pkg->path]);
for (j = 0; j < deps->i; ++j) {
dep = deps->p[j];
fputc('\t', stderr);
fputs(&dep->strings.p[dep->path], stderr);
fputc('\n', stderr);
}
exit(1);
}
}
free(pkg->undefs.p);
memset(&pkg->undefs, 0, sizeof(pkg->undefs));
}
forceinline bool IsRipRelativeModrm(uint8_t modrm) {
return (modrm & 0b11000111) == 0b00000101;
}
forceinline uint8_t ChangeRipToRbx(uint8_t modrm) {
return (modrm & 0b00111000) | 0b10000011;
}
void OptimizeRelocations(struct Package *pkg, struct Packages *deps,
struct Object *obj) {
Elf64_Half i;
struct Op *op;
Elf64_Rela *rela;
struct Symbol *refsym;
struct Package *refpkg;
unsigned char *code, *p;
Elf64_Shdr *shdr, *shdrcode;
for (i = 0; i < obj->elf->e_shnum; ++i) {
shdr = GetElfSectionHeaderAddress(obj->elf, obj->size, i);
if (shdr->sh_type == SHT_RELA) {
CHECK_EQ(sizeof(struct Elf64_Rela), shdr->sh_entsize);
CHECK_NOTNULL((shdrcode = GetElfSectionHeaderAddress(obj->elf, obj->size,
shdr->sh_info)));
if (!(shdrcode->sh_flags & SHF_EXECINSTR)) continue;
CHECK_NOTNULL(
(code = GetElfSectionAddress(obj->elf, obj->size, shdrcode)));
for (rela = GetElfSectionAddress(obj->elf, obj->size, shdr);
((uintptr_t)rela + shdr->sh_entsize <=
min((uintptr_t)obj->elf + obj->size,
(uintptr_t)obj->elf + shdr->sh_offset + shdr->sh_size));
++rela) {
CHECK_LT(ELF64_R_SYM(rela->r_info), obj->symcount);
#if 0
/*
* Change (%rip) to (%rbx) on program instructions that
* reference memory, if and only if the memory location is a
* global variable that's mutable after initialization. The
* displacement is also updated to be relative to the image
* base, rather than relative to the program counter.
*/
if ((ELF64_R_TYPE(rela->r_info) == R_X86_64_PC32 ||
ELF64_R_TYPE(rela->r_info) == R_X86_64_GOTPCREL) &&
FindSymbol(
GetElfString(obj->elf, obj->size, obj->strs,
obj->syms[ELF64_R_SYM(rela->r_info)].st_name),
pkg, deps, &refpkg, &refsym) &&
(refsym->kind == kData || refsym->kind == kBss) &&
IsRipRelativeModrm(code[rela->r_offset - 1])) {
op = &obj->sections.p[shdr->sh_info].ops.p[bisectcarleft(
(const int32_t(*)[2])obj->sections.p[shdr->sh_info].ops.p,
obj->sections.p[shdr->sh_info].ops.i, rela->r_offset)];
CHECK_GT(op->length, 4);
CHECK_GT(op->pos_disp, 0);
rela->r_info = ELF64_R_INFO(ELF64_R_SYM(rela->r_info), R_X86_64_32S);
rela->r_addend = -IMAGE_BASE_VIRTUAL + rela->r_addend +
(op->length - op->pos_disp);
code[rela->r_offset - 1] = ChangeRipToRbx(code[rela->r_offset - 1]);
}
#endif
/*
* GCC isn't capable of -mnop-mcount when using -fpie.
* Let's fix that. It saves ~14 cycles per function call.
* Then libc/runtime/ftrace.greg.c morphs it back at runtime.
*/
if (ELF64_R_TYPE(rela->r_info) == R_X86_64_GOTPCRELX &&
strcmp(GetElfString(obj->elf, obj->size, obj->strs,
obj->syms[ELF64_R_SYM(rela->r_info)].st_name),
"mcount") == 0) {
rela->r_info = R_X86_64_NONE;
p = &code[rela->r_offset - 2];
p[0] = 0x66; /* nopw 0x00(%rax,%rax,1) */
p[1] = 0x0f;
p[2] = 0x1f;
p[3] = 0x44;
p[4] = 0x00;
p[5] = 0x00;
}
/*
* Let's just try to nop mcount calls in general due to the above.
*/
if ((ELF64_R_TYPE(rela->r_info) == R_X86_64_PC32 ||
ELF64_R_TYPE(rela->r_info) == R_X86_64_PLT32) &&
strcmp(GetElfString(obj->elf, obj->size, obj->strs,
obj->syms[ELF64_R_SYM(rela->r_info)].st_name),
"mcount") == 0) {
rela->r_info = R_X86_64_NONE;
p = &code[rela->r_offset - 1];
p[0] = 0x0f; /* nopl 0x00(%rax,%rax,1) */
p[1] = 0x1f;
p[2] = 0x44;
p[3] = 0x00;
p[4] = 0x00;
}
}
}
}
}
bool IsSymbolDirectlyReachable(struct Package *pkg, struct Packages *deps,
const char *symbol) {
return FindSymbol(symbol, pkg, deps, NULL, NULL);
}
struct RlEncoder {
size_t i, n;
struct RlDecode *p;
};
ssize_t rlencode_extend(struct RlEncoder *rle, size_t n) {
size_t n2;
struct RlDecode *p2;
n2 = rle->n;
if (!n2) n2 = 512;
while (n > n2) n2 += n2 >> 1;
if (!(p2 = realloc(rle->p, n2 * sizeof(rle->p[0])))) return -1;
rle->p = p2;
rle->n = n2;
return n2;
}
void rlencode_encode(struct RlEncoder *rle, const unsigned char *data,
size_t size) {
size_t i, j;
for (i = 0; i < size; i += j) {
for (j = 1; j < 255 && i + j < size; ++j) {
if (data[i] != data[i + j]) break;
}
rle->p[rle->i].repititions = j;
rle->p[rle->i].byte = data[i];
rle->i++;
}
rle->p[rle->i].repititions = 0;
rle->p[rle->i].byte = 0;
rle->i++;
}
ssize_t rlencode(struct RlEncoder *rle, const unsigned char *data,
size_t size) {
if (size + 1 > rle->n && rlencode_extend(rle, size + 1) == -1) return -1;
rlencode_encode(rle, data, size);
assert(rle->i <= rle->n);
return rle->i;
}
void CompressLowEntropyReadOnlyDataSections(struct Package *pkg,
struct Packages *deps,
struct Object *obj) {
Elf64_Half i;
const char *name;
unsigned char *p;
Elf64_Shdr *shdr;
struct RlEncoder rle;
bool haverldecode, isprofitable;
memset(&rle, 0, sizeof(rle));
haverldecode = IsSymbolDirectlyReachable(pkg, deps, "rldecode");
for (i = 0; i < obj->elf->e_shnum; ++i) {
if ((shdr = GetElfSectionHeaderAddress(obj->elf, obj->size, i)) &&
shdr->sh_size >= 256 &&
(shdr->sh_type == SHT_PROGBITS &&
!(shdr->sh_flags &
(SHF_WRITE | SHF_MERGE | SHF_STRINGS | SHF_COMPRESSED))) &&
(p = GetElfSectionAddress(obj->elf, obj->size, shdr)) &&
startswith((name = GetElfSectionName(obj->elf, obj->size, shdr)),
".rodata") &&
rlencode(&rle, p, shdr->sh_size) != -1) {
isprofitable = rle.i * sizeof(rle.p[0]) <= shdr->sh_size / 2;
LOGF("%s(%s): rlencode()%s on %s is%s profitable (%,zu → %,zu bytes)",
&pkg->strings.p[pkg->path], &pkg->strings.p[obj->path],
haverldecode ? "" : " [NOT LINKED]", name,
isprofitable ? "" : " NOT", shdr->sh_size, rle.i * sizeof(rle.p[0]));
}
}
free(rle.p);
}
void RewriteObjects(struct Package *pkg, struct Packages *deps) {
size_t i;
struct Object *obj;
#if 0
struct ElfWriter *elf;
elf = elfwriter_open(gc(xstrcat(&pkg->strings.p[pkg->path], ".o")), 0644);
elfwriter_cargoculting(elf);
#endif
for (i = 0; i < pkg->objects.i; ++i) {
obj = &pkg->objects.p[i];
OpenObject(pkg, obj, O_RDWR, PROT_READ | PROT_WRITE, MAP_SHARED);
OptimizeRelocations(pkg, deps, obj);
#if 0
CompressLowEntropyReadOnlyDataSections(pkg, deps, obj);
#endif
CloseObject(obj);
}
#if 0
elfwriter_close(elf);
#endif
}
void Package(int argc, char *argv[], struct Package *pkg,
struct Packages *deps) {
size_t i, j;
GetOpts(pkg, deps, argc, argv);
LoadObjects(pkg);
CheckStrictDeps(pkg, deps);
RewriteObjects(pkg, deps);
WritePackage(pkg);
for (i = 0; i < deps->i; ++i) {
CHECK_NE(-1, munmap(deps->p[i]->addr, deps->p[i]->size));
}
for (i = 0; i < pkg->objects.i; ++i) {
for (j = 0; j < pkg->objects.p[i].sections.i; ++j) {
free(pkg->objects.p[i].sections.p[j].ops.p);
}
free(pkg->objects.p[i].sections.p);
}
free_s(&pkg->strings.p);
free_s(&pkg->objects.p);
free_s(&pkg->symbols.p);
free_s(&deps->p);
}
int main(int argc, char *argv[]) {
struct Package pkg;
struct Packages deps;
showcrashreports();
memset(&pkg, 0, sizeof(pkg));
memset(&deps, 0, sizeof(deps));
Package(argc, argv, &pkg, &deps);
return 0;
}