cosmopolitan/tool/viz/lib/ycbcr2rgb3.c

396 lines
16 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ This program is free software; you can redistribute it and/or modify │
│ it under the terms of the GNU General Public License as published by │
│ the Free Software Foundation; version 2 of the License. │
│ │
│ This program is distributed in the hope that it will be useful, but │
│ WITHOUT ANY WARRANTY; without even the implied warranty of │
│ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │
│ General Public License for more details. │
│ │
│ You should have received a copy of the GNU General Public License │
│ along with this program; if not, write to the Free Software │
│ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │
│ 02110-1301 USA │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "dsp/core/c11.h"
#include "dsp/core/c1331.h"
#include "dsp/core/c1331s.h"
#include "dsp/core/c161.h"
#include "dsp/core/core.h"
#include "dsp/core/half.h"
#include "dsp/core/illumination.h"
#include "dsp/core/q.h"
#include "dsp/scale/scale.h"
#include "libc/bits/xmmintrin.h"
#include "libc/calls/calls.h"
#include "libc/calls/sigbits.h"
#include "libc/calls/struct/sigset.h"
#include "libc/intrin/pmulhrsw.h"
#include "libc/log/check.h"
#include "libc/log/log.h"
#include "libc/macros.h"
#include "libc/math.h"
#include "libc/mem/mem.h"
#include "libc/nexgen32e/gc.h"
#include "libc/nexgen32e/nexgen32e.h"
#include "libc/nexgen32e/x86feature.h"
#include "libc/runtime/gc.h"
#include "libc/runtime/runtime.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/sig.h"
#include "libc/sysv/errfuns.h"
#include "libc/time/time.h"
#include "libc/x/x.h"
#include "third_party/avir/lanczos.h"
#include "tool/viz/lib/graphic.h"
#include "tool/viz/lib/knobs.h"
#include "tool/viz/lib/scale.h"
#include "tool/viz/lib/ycbcr.h"
#define M 15
#define CLAMP(X) MIN(255, MAX(0, X))
const double kBt601Primaries[] = {.299, .587, .114};
const double kBt709Primaries[] = {871024 / 4096299., 8788810 / 12288897.,
887015 / 12288897.};
const double kSrgbToXyz[3][3] = {
{506752 / 1228815., 87881 / 245763., 12673 / 70218.},
{87098 / 409605., 175762 / 245763., 12673 / 175545.},
{7918 / 409605., 87881 / 737289., 1001167 / 1053270.},
};
long magikarp_latency_;
long gyarados_latency_;
long ycbcr2rgb_latency_;
long double magikarp_start_;
struct YCbCr {
bool yonly;
int magnums[8][4];
int lighting[6][4];
unsigned char transfer[2][256];
struct YCbCrSamplingSolution {
long dyn, dxn;
long syn, sxn;
double ry, rx;
double oy, ox;
double py, px;
struct SamplingSolution *cy, *cx;
} luma, chroma;
};
/**
* Computes magnums for YCbCr decoding.
*
* @param swing should be 219 for TV, or 255 for JPEG
* @param M is integer coefficient bits
*/
void YCbCrComputeCoefficients(int swing, double gamma,
const double primaries[3],
const double illuminant[3], int out_magnums[8][4],
int out_lighting[6][4],
unsigned char out_transfer[256]) {
int i, j;
double x;
double f1[6][3];
long longs[6][6];
long bitlimit = roundup2pow(swing);
long wordoffset = rounddown2pow((bitlimit - swing) / 2);
long chromaswing = swing + 2 * (bitlimit / 2. - swing / 2. - wordoffset);
long lumamin = wordoffset;
long lumamax = wordoffset + swing;
long diffmax = wordoffset + chromaswing - bitlimit / 2;
long diffmin = -diffmax;
double rEb = 1 - primaries[2] + primaries[0] + primaries[1];
double rEgEb = 1 / primaries[1] * primaries[2] * rEb;
double rEr = 1 - primaries[0] + primaries[1] + primaries[2];
double rEgEr = 1 / primaries[1] * primaries[0] * rEr;
double unswing = 1. / swing * bitlimit;
double digital = 1. / swing * chromaswing;
double reals[6][6] = {
{rEr / digital},
{-rEgEb / digital, -rEgEr / digital},
{rEb / digital},
{0, 0, unswing},
};
for (i = 0; i < 4; ++i) {
GetIntegerCoefficients(longs[i], reals[i], M, diffmin, diffmax);
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
out_magnums[i][j] = longs[i][j];
}
}
out_magnums[3][0] = wordoffset;
out_magnums[3][1] = bitlimit / 2;
GetChromaticAdaptationMatrix(f1, kIlluminantD65, illuminant);
for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j) {
reals[i][j] = f1[i][j];
}
}
for (i = 0; i < 6; ++i) {
GetIntegerCoefficients(longs[i], reals[i], M, diffmin * 2, lumamax * 2);
}
for (i = 0; i < 6; ++i) {
for (j = 0; j < 3; ++j) {
out_lighting[i][j] = longs[i][j];
}
}
for (i = 0; i < 256; ++i) {
x = i;
x /= 255;
x = tv2pcgamma(x, gamma);
x *= 255;
out_transfer[i] = CLAMP(x);
}
memset(out_transfer, out_transfer[lumamin], lumamin);
memset(out_transfer + lumamax + 1, out_transfer[lumamax], bitlimit - lumamax);
}
void YCbCrInit(struct YCbCr **ycbcr, bool yonly, int swing, double gamma,
const double gamut[3], const double illuminant[3]) {
if (!*ycbcr) *ycbcr = xcalloc(1, sizeof(struct YCbCr));
(*ycbcr)->yonly = yonly;
memset((*ycbcr)->magnums, 0, sizeof((*ycbcr)->magnums));
memset((*ycbcr)->lighting, 0, sizeof((*ycbcr)->lighting));
YCbCrComputeCoefficients(swing, gamma, gamut, illuminant, (*ycbcr)->magnums,
(*ycbcr)->lighting, (*ycbcr)->transfer[0]);
imapxlatab((*ycbcr)->transfer[1]);
}
void YCbCrFree(struct YCbCr **ycbcr) {
if (*ycbcr) {
FreeSamplingSolution((*ycbcr)->luma.cy), (*ycbcr)->luma.cy = NULL;
FreeSamplingSolution((*ycbcr)->luma.cx), (*ycbcr)->luma.cx = NULL;
FreeSamplingSolution((*ycbcr)->chroma.cy), (*ycbcr)->chroma.cy = NULL;
FreeSamplingSolution((*ycbcr)->chroma.cx), (*ycbcr)->chroma.cx = NULL;
free(*ycbcr), *ycbcr = NULL;
}
}
void *YCbCrReallocPlane(long ys, long xs, const unsigned char p[ys][xs],
long yn, long xn) {
long y;
unsigned char(*res)[yn][xn];
res = xmemalign(32, yn * xn);
for (y = 0; y < yn; ++y) {
memcpy((*res)[y], p[y], xn);
}
return res;
}
void YCbCrComputeSamplingSolution(struct YCbCrSamplingSolution *scale, long dyn,
long dxn, long syn, long sxn, double ry,
double rx, double oy, double ox, double py,
double px) {
if (scale->dyn != dyn || scale->dxn != dxn || scale->syn != syn ||
scale->sxn != sxn || fabs(scale->ry - ry) > .001 ||
fabs(scale->rx - rx) > .001 || fabs(scale->oy - oy) > .001 ||
fabs(scale->ox - ox) > .001 || fabs(scale->py - py) > .001 ||
fabs(scale->px - px) > .001) {
LOGF("recomputing sampling solution");
FreeSamplingSolution(scale->cy), scale->cy = NULL;
FreeSamplingSolution(scale->cx), scale->cx = NULL;
scale->cy = ComputeSamplingSolution(dyn, syn, ry, oy, py);
scale->cx = ComputeSamplingSolution(dxn, sxn, rx, ox, px);
scale->dyn = dyn, scale->dxn = dxn;
scale->syn = syn, scale->sxn = sxn;
scale->ry = ry, scale->rx = rx;
scale->oy = oy, scale->ox = ox;
scale->py = py, scale->px = px;
}
}
void Y2Rgb(long yn, long xn, unsigned char RGB[restrict 3][yn][xn], long yys,
long yxs, const unsigned char Y[restrict yys][yxs],
const int K[8][4], const unsigned char T[256]) {
long i, j;
for (i = 0; i < yn; ++i) {
for (j = 0; j < xn; ++j) {
RGB[0][i][j] = T[Y[i][j]];
}
}
memcpy(RGB[1], RGB[0], yn * xn);
memcpy(RGB[2], RGB[0], yn * xn);
}
/**
* Converts YCbCr samples to RGB.
*/
void YCbCr2Rgb(long yn, long xn, unsigned char RGB[restrict 3][yn][xn],
long yys, long yxs, const unsigned char Y[restrict yys][yxs],
long cys, long cxs, const unsigned char Cb[restrict cys][cxs],
const unsigned char Cr[restrict cys][cxs], const int K[8][4],
const int L[6][4], const unsigned char T[256]) {
long i, j;
short y, u, v, r, g, b, A, B, C;
for (i = 0; i < yn; ++i) {
for (j = 0; j < xn; ++j) {
y = Y[i][j];
u = Cb[i][j] - K[3][1];
v = Cr[i][j] - K[3][1];
r = y + QRS(M, v * K[0][0]);
g = y + QRS(M, u * K[1][0] + v * K[1][1]);
b = y + QRS(M, u * K[2][0]);
r = QRS(M, (MIN(235, MAX(16, r)) - K[3][0]) * K[3][2]);
g = QRS(M, (MIN(235, MAX(16, g)) - K[3][0]) * K[3][2]);
b = QRS(M, (MIN(235, MAX(16, b)) - K[3][0]) * K[3][2]);
RGB[0][i][j] = CLAMP(QRS(M, r * L[0][0] + g * L[0][1] + b * L[0][2]));
RGB[1][i][j] = CLAMP(QRS(M, r * L[1][0] + g * L[1][1] + b * L[1][2]));
RGB[2][i][j] = CLAMP(QRS(M, r * L[2][0] + g * L[2][1] + b * L[2][2]));
}
}
}
void YCbCrConvert(struct YCbCr *me, long yn, long xn,
unsigned char RGB[restrict 3][yn][xn], long yys, long yxs,
const unsigned char Y[restrict yys][yxs], long cys, long cxs,
unsigned char Cb[restrict cys][cxs],
unsigned char Cr[restrict cys][cxs]) {
long double ts;
ts = nowl();
if (!me->yonly) {
YCbCr2Rgb(yn, xn, RGB, yys, yxs, Y, cys, cxs, Cb, Cr, me->magnums,
me->lighting, me->transfer[pf10_]);
} else {
Y2Rgb(yn, xn, RGB, yys, yxs, Y, me->magnums, me->transfer[pf10_]);
}
ycbcr2rgb_latency_ = lroundl((nowl() - ts) * 1e6l);
}
void YCbCr2RgbScaler(struct YCbCr *me, long dyn, long dxn,
unsigned char RGB[restrict 3][dyn][dxn], long yys,
long yxs, unsigned char Y[restrict yys][yxs], long cys,
long cxs, unsigned char Cb[restrict cys][cxs],
unsigned char Cr[restrict cys][cxs], long yyn, long yxn,
long cyn, long cxn, double syn, double sxn, double pry,
double prx) {
long double ts;
long y, x, scyn, scxn;
double yry, yrx, cry, crx, yoy, yox, coy, cox, err, oy;
scyn = syn * cyn / yyn;
scxn = sxn * cxn / yxn;
if (HALF(yxn) > dxn && HALF(scxn) > dxn) {
YCbCr2RgbScaler(me, dyn, dxn, RGB, yys, yxs,
Magikarp2xX(yys, yxs, Y, syn, sxn), cys, cxs,
Magkern2xX(cys, cxs, Cb, scyn, scxn),
Magkern2xX(cys, cxs, Cr, scyn, scxn), yyn, HALF(yxn), cyn,
HALF(cxn), syn, sxn / 2, pry, prx);
} else if (HALF(yyn) > dyn && HALF(scyn) > dyn) {
YCbCr2RgbScaler(me, dyn, dxn, RGB, yys, yxs,
Magikarp2xY(yys, yxs, Y, syn, sxn), cys, cxs,
Magkern2xY(cys, cxs, Cb, scyn, scxn),
Magkern2xY(cys, cxs, Cr, scyn, scxn), HALF(yyn), yxn,
HALF(cyn), scxn, syn / 2, sxn, pry, prx);
} else {
magikarp_latency_ = lroundl((nowl() - magikarp_start_) * 1e6l);
ts = nowl();
yry = syn / dyn;
yrx = sxn / dxn;
cry = syn * cyn / yyn / dyn;
crx = sxn * cxn / yxn / dxn;
yoy = syn / scyn / 2 - pry * .5;
yox = sxn / scxn / 2 - prx * .5;
coy = syn / scyn / 2 - pry * .5;
cox = sxn / scxn / 2 - prx * .5;
LOGF("gyarados pry=%.3f prx=%.3f syn=%.3f sxn=%.3f dyn=%ld dxn=%ld "
"yyn=%ld "
"yxn=%ld cyn=%ld cxn=%ld yry=%.3f yrx=%.3f cry=%.3f crx=%.3f "
"yoy=%.3f "
"yox=%.3f coy=%.3f cox=%.3f",
pry, prx, syn, sxn, dyn, dxn, yyn, yxn, cyn, cxn, yry, yrx, cry, crx,
yoy, yox, coy, cox);
YCbCrComputeSamplingSolution(&me->luma, dyn, dxn, syn, sxn, yry, yrx, yoy,
yox, pry, prx);
YCbCrComputeSamplingSolution(&me->chroma, dyn, dxn, scyn, scxn, cry, crx,
coy, cox, pry, prx);
if (pf8_) sharpen(1, yys, yxs, (void *)Y, yyn, yxn);
if (pf9_) unsharp(1, yys, yxs, (void *)Y, yyn, yxn);
GyaradosUint8(yys, yxs, Y, yys, yxs, Y, dyn, dxn, syn, sxn, 0, 255,
me->luma.cy, me->luma.cx, true);
GyaradosUint8(cys, cxs, Cb, cys, cxs, Cb, dyn, dxn, scyn, scxn, 0, 255,
me->chroma.cy, me->chroma.cx, false);
GyaradosUint8(cys, cxs, Cr, cys, cxs, Cr, dyn, dxn, scyn, scxn, 0, 255,
me->chroma.cy, me->chroma.cx, false);
gyarados_latency_ = lround((nowl() - ts) * 1e6l);
YCbCrConvert(me, dyn, dxn, RGB, yys, yxs, Y, cys, cxs, Cb, Cr);
LOGF("done");
}
}
/**
* Converts YCbCr frame for PC display.
*
* "[The] experiments of Professor J. D. Forbes, which I
* witnessed… [established] that blue and yellow do not
* make green but a pinkish tint, when neither prevails
* in the combination [and the] result of mixing yellow
* and blue was, I believe, not previously known.
* — James Clerk Maxwell
*
* This function converts TV to PC graphics. We do that by
*
* 1. decimating w/ facebook magikarp photoshop cubic sharpen
* 2. upsampling color difference planes, to be as big as luma plane
* 3. converting color format
* 4. expanding dynamic range
* 5. transferring gamma from TV to PC convention
* 6. resampling again to exact requested display / pixel geometry
*
* @param dyn/dxn is display height/width after scaling/conversion
* @param RGB points to memory for packed de-interlaced RGB output
* @param Y ∈ [16,235] is the luminance plane a gamma-corrected RGB
* weighted sum; a.k.a. black/white legacy component part of the
* TV signal; which may be used independently of the chrominance
* planes; and decodes to the range [0,1]
* @param Cb/Cr ∈ [16,240] is blue/red chrominance difference planes
* which (if sampled at a different rate) will get stretched out
* over the luma plane appropriately
* @param yys/yxs dimensions luma sample array
* @param cys/cxs dimensions chroma sample arrays
* @param yyn/yxn is number of samples in luma signal
* @param cyn/cxn is number of samples in each chroma signal
* @param syn/sxn is size of source signal
* @param pry/prx is pixel aspect ratio, e.g. 1,1
* @return RGB
*/
void *YCbCr2RgbScale(long dyn, long dxn,
unsigned char RGB[restrict 3][dyn][dxn], long yys,
long yxs, unsigned char Y[restrict yys][yxs], long cys,
long cxs, unsigned char Cb[restrict cys][cxs],
unsigned char Cr[restrict cys][cxs], long yyn, long yxn,
long cyn, long cxn, double syn, double sxn, double pry,
double prx, struct YCbCr **ycbcr) {
long minyys, minyxs, mincys, mincxs;
CHECK_LE(yyn, yys);
CHECK_LE(yxn, yxs);
CHECK_LE(cyn, cys);
CHECK_LE(cxn, cxs);
LOGF("magikarp2x");
magikarp_start_ = nowl();
minyys = MAX(ceil(syn), MAX(yyn, ceil(dyn * pry)));
minyxs = MAX(ceil(sxn), MAX(yxn, ceil(dxn * prx)));
mincys = MAX(cyn, ceil(dyn * pry));
mincxs = MAX(cxn, ceil(dxn * prx));
YCbCr2RgbScaler(*ycbcr, dyn, dxn, RGB, MAX(yys, minyys), MAX(yxs, minyxs),
(yys >= minyys && yxs >= minyxs
? Y
: gc(YCbCrReallocPlane(yys, yxs, Y, minyys, minyxs))),
MAX(cys, mincys), MAX(cxs, mincxs),
(cys >= mincys && cxs >= mincxs
? Cb
: gc(YCbCrReallocPlane(cys, cxs, Cb, mincys, mincxs))),
(cys >= mincys && cxs >= mincxs
? Cr
: gc(YCbCrReallocPlane(cys, cxs, Cr, mincys, mincxs))),
yyn, yxn, cyn, cxn, syn, sxn, pry, prx);
return RGB;
}