/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright 2020 Justine Alexandra Roberts Tunney │ │ │ │ This program is free software; you can redistribute it and/or modify │ │ it under the terms of the GNU General Public License as published by │ │ the Free Software Foundation; version 2 of the License. │ │ │ │ This program is distributed in the hope that it will be useful, but │ │ WITHOUT ANY WARRANTY; without even the implied warranty of │ │ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │ │ General Public License for more details. │ │ │ │ You should have received a copy of the GNU General Public License │ │ along with this program; if not, write to the Free Software │ │ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │ │ 02110-1301 USA │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/calls/calls.h" #include "libc/calls/internal.h" #include "libc/calls/ioctl.h" #include "libc/calls/struct/iovec.h" #include "libc/calls/struct/rusage.h" #include "libc/calls/struct/sigaction-linux.h" #include "libc/calls/struct/sigaction.h" #include "libc/calls/struct/stat.h" #include "libc/calls/struct/termios.h" #include "libc/calls/struct/timespec.h" #include "libc/calls/struct/timeval.h" #include "libc/calls/struct/winsize.h" #include "libc/errno.h" #include "libc/fmt/fmt.h" #include "libc/log/check.h" #include "libc/log/log.h" #include "libc/macros.h" #include "libc/mem/mem.h" #include "libc/nexgen32e/vendor.h" #include "libc/runtime/gc.h" #include "libc/runtime/runtime.h" #include "libc/sock/sock.h" #include "libc/str/str.h" #include "libc/sysv/consts/af.h" #include "libc/sysv/consts/at.h" #include "libc/sysv/consts/clock.h" #include "libc/sysv/consts/f.h" #include "libc/sysv/consts/fd.h" #include "libc/sysv/consts/ipproto.h" #include "libc/sysv/consts/lock.h" #include "libc/sysv/consts/madv.h" #include "libc/sysv/consts/map.h" #include "libc/sysv/consts/msync.h" #include "libc/sysv/consts/o.h" #include "libc/sysv/consts/ok.h" #include "libc/sysv/consts/prot.h" #include "libc/sysv/consts/rusage.h" #include "libc/sysv/consts/sa.h" #include "libc/sysv/consts/sig.h" #include "libc/sysv/consts/so.h" #include "libc/sysv/consts/sock.h" #include "libc/sysv/consts/sol.h" #include "libc/sysv/consts/tcp.h" #include "libc/sysv/consts/termios.h" #include "libc/sysv/consts/w.h" #include "libc/sysv/errfuns.h" #include "libc/time/struct/timezone.h" #include "libc/time/time.h" #include "libc/x/x.h" #include "tool/build/lib/case.h" #include "tool/build/lib/endian.h" #include "tool/build/lib/iovs.h" #include "tool/build/lib/machine.h" #include "tool/build/lib/memory.h" #include "tool/build/lib/pml4t.h" #include "tool/build/lib/syscall.h" #include "tool/build/lib/throw.h" #include "tool/build/lib/xlaterrno.h" #define AT_FDCWD_LINUX -100 #define TIOCGWINSZ_LINUX 0x5413 #define TCGETS_LINUX 0x5401 #define TCSETS_LINUX 0x5402 #define TCSETSW_LINUX 0x5403 #define TCSETSF_LINUX 0x5404 #define ISIG_LINUX 0b0000000000000001 #define ICANON_LINUX 0b0000000000000010 #define ECHO_LINUX 0b0000000000001000 #define OPOST_LINUX 0b0000000000000001 #define POINTER(x) ((void *)(intptr_t)(x)) #define UNPOINTER(x) ((int64_t)(intptr_t)(x)) #define SYSCALL(x, y) CASE(x, asm("# " #y); ax = y) #define XLAT(x, y) CASE(x, return y) #define PNN(x) ResolveAddress(m, x) #define P(x) ((x) ? PNN(x) : 0) #define ASSIGN(D, S) memcpy(&D, &S, MIN(sizeof(S), sizeof(D))) const struct MachineFdCb kMachineFdCbHost = { .close = close, .readv = readv, .writev = writev, .ioctl = ioctl, }; static int XlatSignal(int sig) { switch (sig) { XLAT(1, SIGHUP); XLAT(2, SIGINT); XLAT(3, SIGQUIT); XLAT(4, SIGILL); XLAT(5, SIGTRAP); XLAT(6, SIGABRT); XLAT(7, SIGBUS); XLAT(8, SIGFPE); XLAT(9, SIGKILL); XLAT(10, SIGUSR1); XLAT(11, SIGSEGV); XLAT(13, SIGPIPE); XLAT(14, SIGALRM); XLAT(15, SIGTERM); XLAT(21, SIGTTIN); XLAT(22, SIGTTOU); XLAT(24, SIGXCPU); XLAT(25, SIGXFSZ); XLAT(26, SIGVTALRM); XLAT(27, SIGPROF); XLAT(28, SIGWINCH); XLAT(17, SIGCHLD); XLAT(18, SIGCONT); XLAT(29, SIGIO); XLAT(19, SIGSTOP); XLAT(31, SIGSYS); XLAT(20, SIGTSTP); XLAT(23, SIGURG); XLAT(12, SIGUSR2); XLAT(0x2000, SIGSTKSZ); XLAT(30, SIGPWR); XLAT(0x10, SIGSTKFLT); default: return einval(); } } static int XlatSig(int x) { switch (x) { XLAT(0, SIG_BLOCK); XLAT(1, SIG_UNBLOCK); XLAT(2, SIG_SETMASK); default: return einval(); } } static int XlatSocketFamily(int x) { switch (x) { XLAT(0, AF_INET); XLAT(2, AF_INET); default: return epfnosupport(); } } static int XlatSocketType(int x) { switch (x) { XLAT(1, SOCK_STREAM); XLAT(2, SOCK_DGRAM); default: return einval(); } } static int XlatSocketProtocol(int x) { switch (x) { XLAT(6, IPPROTO_TCP); XLAT(17, IPPROTO_UDP); default: return einval(); } } static unsigned XlatSocketFlags(int flags) { unsigned res = 0; if (flags & 0x080000) res |= SOCK_CLOEXEC; if (flags & 0x000800) res |= SOCK_NONBLOCK; return res; } static int XlatSocketLevel(int x) { switch (x) { XLAT(0, SOL_IP); XLAT(1, SOL_SOCKET); XLAT(6, SOL_TCP); XLAT(17, SOL_UDP); default: return einval(); } } static int XlatSocketOptname(int x) { switch (x) { XLAT(2, SO_REUSEADDR); XLAT(15, SO_REUSEPORT); XLAT(9, SO_KEEPALIVE); XLAT(5, SO_DONTROUTE); XLAT(7, SO_SNDBUF); XLAT(8, SO_RCVBUF); XLAT(13, SO_LINGER); default: return einval(); } } static int XlatMapFlags(int x) { unsigned res = 0; if (x & 1) res |= MAP_SHARED; if (x & 2) res |= MAP_PRIVATE; if (x & 16) res |= MAP_FIXED; if (x & 32) res |= MAP_ANONYMOUS; return res; } static int XlatAccess(int x) { unsigned res = F_OK; if (x & 1) res |= X_OK; if (x & 2) res |= W_OK; if (x & 4) res |= R_OK; return res; } static int XlatSigaction(int x) { unsigned res = 0; if (x & 0x00000001) res |= SA_NOCLDSTOP; if (x & 0x00000002) res |= SA_NOCLDWAIT; if (x & 0x00000004) res |= SA_SIGINFO; if (x & 0x04000000) res |= SA_RESTORER; if (x & 0x08000000) res |= SA_ONSTACK; if (x & 0x10000000) res |= SA_RESTART; if (x & 0x40000000) res |= SA_NODEFER; if (x & 0x40000000) res |= SA_NOMASK; if (x & 0x80000000) res |= SA_RESETHAND; if (x & 0x80000000) res |= SA_ONESHOT; return res; } static int XlatSo(int x) { switch (x) { XLAT(-1, SO_EXCLUSIVEADDRUSE); XLAT(1, SO_DEBUG); XLAT(2, SO_REUSEADDR); XLAT(3, SO_TYPE); XLAT(4, SO_ERROR); XLAT(5, SO_DONTROUTE); XLAT(6, SO_BROADCAST); XLAT(7, SO_SNDBUF); XLAT(8, SO_RCVBUF); XLAT(9, SO_KEEPALIVE); XLAT(10, SO_OOBINLINE); XLAT(13, SO_LINGER); XLAT(15, SO_REUSEPORT); XLAT(17, SO_PEERCRED); XLAT(18, SO_RCVLOWAT); XLAT(19, SO_SNDLOWAT); XLAT(20, SO_RCVTIMEO); XLAT(21, SO_SNDTIMEO); XLAT(29, SO_TIMESTAMP); XLAT(30, SO_ACCEPTCONN); XLAT(38, SO_PROTOCOL); XLAT(39, SO_DOMAIN); XLAT(47, SO_MAX_PACING_RATE); default: return x; } } static int XlatClock(int x) { switch (x) { XLAT(0, CLOCK_REALTIME); XLAT(4, CLOCK_MONOTONIC); default: return x; } } static int XlatTcp(int x) { switch (x) { XLAT(1, TCP_NODELAY); XLAT(2, TCP_MAXSEG); XLAT(4, TCP_KEEPIDLE); XLAT(5, TCP_KEEPINTVL); XLAT(6, TCP_KEEPCNT); XLAT(23, TCP_FASTOPEN); default: return x; } } static int XlatFd(struct Machine *m, int fd) { if (!(0 <= fd && fd < m->fds.i)) return ebadf(); if (!m->fds.p[fd].cb) return ebadf(); return m->fds.p[fd].fd; } static int XlatAfd(struct Machine *m, int fd) { if (fd == AT_FDCWD_LINUX) return AT_FDCWD; return XlatFd(m, fd); } static int XlatAtf(int x) { unsigned res = 0; if (x & 0x0100) res |= AT_SYMLINK_NOFOLLOW; if (x & 0x0200) res |= AT_REMOVEDIR; if (x & 0x0400) res |= AT_SYMLINK_FOLLOW; if (x & 0x1000) res |= AT_EMPTY_PATH; return res; } static int XlatMsyncFlags(int x) { unsigned res = 0; if (x & 1) res |= MS_ASYNC; if (x & 2) res |= MS_INVALIDATE; if (x & 4) res |= MS_SYNC; return res; } static unsigned XlatOpenMode(unsigned flags) { switch (flags & 3) { case 0: return O_RDONLY; case 1: return O_WRONLY; case 2: return O_RDWR; default: unreachable; } } static unsigned XlatOpenFlags(unsigned flags) { unsigned res = 0; res = XlatOpenMode(flags); if (flags & 0x80000) res |= O_CLOEXEC; if (flags & 0x400) res |= O_APPEND; if (flags & 0x40) res |= O_CREAT; if (flags & 0x80) res |= O_EXCL; if (flags & 0x200) res |= O_TRUNC; if (flags & 0x0800) res |= O_NDELAY; if (flags & 0x4000) res |= O_DIRECT; if (flags & 0x0800) res |= O_NONBLOCK; if (flags & 0x1000) res |= O_DSYNC; if (flags & 0x101000) res |= O_RSYNC; if (flags & 0x040000) res |= O_NOATIME; return res; } static int XlatFcntlCmd(int x) { switch (x) { XLAT(1, F_GETFD); XLAT(2, F_SETFD); XLAT(3, F_GETFL); XLAT(4, F_SETFL); default: return einval(); } } static int XlatFcntlArg(int x) { switch (x) { XLAT(0, 0); XLAT(1, FD_CLOEXEC); XLAT(0x0800, O_NONBLOCK); default: return einval(); } } static int XlatAdvice(int x) { switch (x) { XLAT(0, MADV_NORMAL); XLAT(1, MADV_RANDOM); XLAT(2, MADV_SEQUENTIAL); XLAT(3, MADV_WILLNEED); XLAT(4, MADV_DONTNEED); XLAT(8, MADV_FREE); XLAT(12, MADV_MERGEABLE); default: return einval(); } } static int XlatLock(int x) { unsigned res = 0; if (x & 1) res |= LOCK_SH; if (x & 2) res |= LOCK_EX; if (x & 4) res |= LOCK_NB; if (x & 8) res |= LOCK_UN; return res; } static int XlatWait(int x) { unsigned res = 0; if (x & 1) res |= WNOHANG; if (x & 2) res |= WUNTRACED; if (x & 8) res |= WCONTINUED; return res; } static int XlatRusage(int x) { switch (x) { XLAT(0, RUSAGE_SELF); XLAT(-1, RUSAGE_CHILDREN); XLAT(1, RUSAGE_THREAD); default: return einval(); } } static const char *GetSimulated(void) { if (IsGenuineCosmo()) { return " SIMULATED"; } else { return ""; } } static void VirtualSendRead(struct Machine *m, void *dst, int64_t addr, uint64_t n) { VirtualSend(m, dst, addr, n); SetReadAddr(m, addr, n); } static void VirtualRecvWrite(struct Machine *m, int64_t addr, void *src, uint64_t n) { VirtualRecv(m, addr, src, n); SetWriteAddr(m, addr, n); } static int AppendIovsReal(struct Machine *m, struct Iovs *ib, int64_t addr, size_t size) { void *real; size_t have; unsigned got; while (size) { if (!(real = FindReal(m, addr))) return efault(); have = 0x1000 - (addr & 0xfff); got = MIN(size, have); if (AppendIovs(ib, real, got) == -1) return -1; addr += got; size -= got; } return 0; } static int AppendIovsGuest(struct Machine *m, struct Iovs *iv, int64_t iovaddr, long iovlen) { int rc; long i, iovsize; struct iovec *guestiovs; if (!__builtin_mul_overflow(iovlen, sizeof(struct iovec), &iovsize) && (0 <= iovsize && iovsize <= 0x7ffff000)) { if ((guestiovs = malloc(iovsize))) { VirtualSendRead(m, guestiovs, iovaddr, iovsize); for (rc = i = 0; i < iovlen; ++i) { if (AppendIovsReal(m, iv, (intptr_t)guestiovs[i].iov_base, guestiovs[i].iov_len) == -1) { rc = -1; break; } } free(guestiovs); } else { rc = enomem(); } } else { rc = eoverflow(); } return rc; } static struct sigaction *CoerceSigactionToCosmo( struct sigaction *dst, const struct sigaction$linux *src) { if (!src) return NULL; memset(dst, 0, sizeof(*dst)); ASSIGN(dst->sa_handler, src->sa_handler); ASSIGN(dst->sa_restorer, src->sa_restorer); ASSIGN(dst->sa_flags, src->sa_flags); ASSIGN(dst->sa_mask, src->sa_mask); return dst; } static struct sigaction$linux *CoerceSigactionToLinux( struct sigaction$linux *dst, const struct sigaction *src) { if (!dst) return NULL; memset(dst, 0, sizeof(*dst)); ASSIGN(dst->sa_handler, src->sa_handler); ASSIGN(dst->sa_restorer, src->sa_restorer); ASSIGN(dst->sa_flags, src->sa_flags); ASSIGN(dst->sa_mask, src->sa_mask); return dst; } static int OpArchPrctl(struct Machine *m, int code, int64_t addr) { switch (code) { case ARCH_SET_GS: Write64(m->gs, addr); return 0; case ARCH_SET_FS: Write64(m->fs, addr); return 0; case ARCH_GET_GS: VirtualRecvWrite(m, addr, m->gs, 8); return 0; case ARCH_GET_FS: VirtualRecvWrite(m, addr, m->fs, 8); return 0; default: return einval(); } } static int OpMprotect(struct Machine *m, int64_t addr, uint64_t len, int prot) { return 0; } static int OpMadvise(struct Machine *m, int64_t addr, size_t length, int advice) { return enosys(); } static int64_t OpBrk(struct Machine *m, int64_t addr) { addr = ROUNDUP(addr, PAGESIZE); if (addr > m->brk) { if (ReserveVirtual(m, m->brk, addr - m->brk, 0x0207) != -1) { m->brk = addr; } } else if (addr < m->brk) { if (FreeVirtual(m, addr, m->brk - addr) != -1) { m->brk = addr; } } return m->brk; } static int OpMunmap(struct Machine *m, int64_t virt, uint64_t size) { VERBOSEF("MUNMAP%s %p %,ld", GetSimulated(), virt, size); return FreeVirtual(m, virt, size); } static int64_t OpMmap(struct Machine *m, int64_t virt, size_t size, int prot, int flags, int fd, int64_t offset) { void *tmp; uint64_t key; VERBOSEF("MMAP%s %p %,ld %#x %#x %d %#lx", GetSimulated(), virt, size, prot, flags, fd, offset); if (prot & PROT_READ) { key = 0x0205; if (prot & PROT_WRITE) key |= 2; if (!(prot & PROT_EXEC)) key |= 0x8000000000000000; flags = XlatMapFlags(flags); if (fd != -1 && (fd = XlatFd(m, fd)) == -1) return -1; if (!(flags & MAP_FIXED)) { if (!virt) { if ((virt = FindVirtual(m, m->brk, size)) == -1) return -1; m->brk = virt + size; } else { if ((virt = FindVirtual(m, virt, size)) == -1) return -1; } } if (ReserveVirtual(m, virt, size, key) != -1) { if (fd != -1 && !(flags & MAP_ANONYMOUS)) { /* TODO: lazy file mappings */ CHECK_NOTNULL((tmp = malloc(size))); CHECK_EQ(size, pread(fd, tmp, size, offset)); VirtualRecvWrite(m, virt, tmp, size); free(tmp); } } else { FreeVirtual(m, virt, size); return -1; } return virt; } else { return FreeVirtual(m, virt, size); } } static int OpMsync(struct Machine *m, int64_t virt, size_t size, int flags) { return enosys(); #if 0 size_t i; void *page; virt = ROUNDDOWN(virt, 4096); flags = XlatMsyncFlags(flags); for (i = 0; i < size; i += 4096) { if (!(page = FindReal(m, virt + i))) return efault(); if (msync(page, 4096, flags) == -1) return -1; } return 0; #endif } static int OpClose(struct Machine *m, int fd) { int rc; struct FdClosed *closed; if (!(0 <= fd && fd < m->fds.i)) return ebadf(); if (!m->fds.p[fd].cb) return ebadf(); rc = m->fds.p[fd].cb->close(m->fds.p[fd].fd); MachineFdRemove(&m->fds, fd); return rc; } static int OpOpenat(struct Machine *m, int dirfd, int64_t pathaddr, int flags, int mode) { int fd, i; const char *path; flags = XlatOpenFlags(flags); if ((dirfd = XlatAfd(m, dirfd)) == -1) return -1; if ((i = MachineFdAdd(&m->fds)) == -1) return -1; path = LoadStr(m, pathaddr); if ((fd = openat(dirfd, path, flags, mode)) != -1) { m->fds.p[i].cb = &kMachineFdCbHost; m->fds.p[i].fd = fd; VERBOSEF("openat(%#x, %`'s, %#x, %#x) → %d [%d]", dirfd, path, flags, mode, i, fd); fd = i; } else { MachineFdRemove(&m->fds, i); VERBOSEF("openat(%#x, %`'s, %#x, %#x) failed", dirfd, path, flags, mode); } return fd; } static int OpPipe(struct Machine *m, int64_t pipefds_addr) { int i, j, pipefds[2]; if ((i = MachineFdAdd(&m->fds)) != -1) { if ((j = MachineFdAdd(&m->fds)) != -1) { if (pipe(pipefds) != -1) { m->fds.p[i].cb = &kMachineFdCbHost; m->fds.p[i].fd = pipefds[0]; m->fds.p[j].cb = &kMachineFdCbHost; m->fds.p[j].fd = pipefds[1]; pipefds[0] = i; pipefds[1] = j; VirtualRecvWrite(m, pipefds_addr, pipefds, sizeof(pipefds)); return 0; } MachineFdRemove(&m->fds, j); } MachineFdRemove(&m->fds, i); } return -1; } static int OpDup(struct Machine *m, int fd) { int i; if ((fd = XlatFd(m, fd)) != -1) { if ((i = MachineFdAdd(&m->fds)) != -1) { if ((fd = dup(fd)) != -1) { m->fds.p[i].cb = &kMachineFdCbHost; m->fds.p[i].fd = fd; return i; } MachineFdRemove(&m->fds, i); } } return -1; } static int OpDup2(struct Machine *m, int fd, int newfd) { int i, rc; if ((fd = XlatFd(m, fd)) == -1) return -1; if ((0 <= newfd && newfd < m->fds.i)) { if ((rc = dup2(fd, m->fds.p[newfd].fd)) != -1) { m->fds.p[newfd].cb = &kMachineFdCbHost; m->fds.p[newfd].fd = rc; rc = newfd; } } else if ((i = MachineFdAdd(&m->fds)) != -1) { if ((rc = dup(fd)) != -1) { m->fds.p[i].cb = &kMachineFdCbHost; m->fds.p[i].fd = rc; rc = i; } } else { rc = -1; } return rc; } static int OpSocket(struct Machine *m, int family, int type, int protocol) { int i, fd; if ((family = XlatSocketFamily(family)) == -1) return -1; if ((type = XlatSocketType(type)) == -1) return -1; if ((protocol = XlatSocketProtocol(protocol)) == -1) return -1; if ((i = MachineFdAdd(&m->fds)) == -1) return -1; if ((fd = socket(family, type, protocol)) != -1) { m->fds.p[i].cb = &kMachineFdCbHost; m->fds.p[i].fd = fd; fd = i; } else { MachineFdRemove(&m->fds, i); } return fd; } static int OpAccept4(struct Machine *m, int fd, int64_t addraddr, int64_t addrsizeaddr, int flags) { int i, rc; void *addr; uint8_t b[4]; uint32_t addrsize; if ((fd = XlatFd(m, fd)) == -1) return -1; VirtualSendRead(m, b, addrsizeaddr, 4); addrsize = Read32(b); if (!(addr = malloc(addrsize))) return -1; if ((i = rc = MachineFdAdd(&m->fds)) != -1) { if ((rc = accept4(fd, addr, &addrsize, XlatSocketFlags(flags))) != -1) { Write32(b, addrsize); VirtualRecv(m, addrsizeaddr, b, 4); VirtualRecvWrite(m, addraddr, addr, addrsize); m->fds.p[i].cb = &kMachineFdCbHost; m->fds.p[i].fd = rc; rc = i; } else { MachineFdRemove(&m->fds, i); } } free(addr); return rc; } static int OpConnectBind(struct Machine *m, int fd, intptr_t addraddr, uint32_t addrsize, int impl(int, const void *, uint32_t)) { int rc; void *addr; if ((fd = XlatFd(m, fd)) == -1) return -1; if (!(addr = malloc(addrsize))) return -1; VirtualSendRead(m, addr, addraddr, addrsize); rc = impl(fd, addr, addrsize); free(addr); return rc; } static int OpBind(struct Machine *m, int fd, intptr_t addraddr, uint32_t addrsize) { return OpConnectBind(m, fd, addraddr, addrsize, bind); } static int OpConnect(struct Machine *m, int fd, int64_t addraddr, uint32_t addrsize) { return OpConnectBind(m, fd, addraddr, addrsize, connect); } static int OpSetsockopt(struct Machine *m, int fd, int level, int optname, int64_t optvaladdr, uint32_t optvalsize) { int rc; void *optval; if ((level = XlatSocketLevel(level)) == -1) return -1; if ((optname = XlatSocketOptname(optname)) == -1) return -1; if ((fd = XlatFd(m, fd)) == -1) return -1; if (!(optval = malloc(optvalsize))) return -1; VirtualSendRead(m, optval, optvaladdr, optvalsize); rc = setsockopt(fd, level, optname, optval, optvalsize); free(optval); return rc; } static ssize_t OpRead(struct Machine *m, int fd, int64_t addr, size_t size) { ssize_t rc; struct Iovs iv; InitIovs(&iv); if ((0 <= fd && fd < m->fds.i) && m->fds.p[fd].cb) { if ((rc = AppendIovsReal(m, &iv, addr, size)) != -1) { if ((rc = m->fds.p[fd].cb->readv(m->fds.p[fd].fd, iv.p, iv.i)) != -1) { SetWriteAddr(m, addr, rc); } } } else { rc = ebadf(); } FreeIovs(&iv); return rc; } static ssize_t OpPread(struct Machine *m, int fd, int64_t addr, size_t size, int64_t offset) { ssize_t rc; struct Iovs iv; InitIovs(&iv); if ((rc = XlatFd(m, fd)) != -1) { fd = rc; if ((rc = AppendIovsReal(m, &iv, addr, size)) != -1) { if ((rc = preadv(fd, iv.p, iv.i, offset)) != -1) { SetWriteAddr(m, addr, rc); } } } FreeIovs(&iv); return rc; } static ssize_t OpWrite(struct Machine *m, int fd, int64_t addr, size_t size) { ssize_t rc; struct Iovs iv; InitIovs(&iv); if ((0 <= fd && fd < m->fds.i) && m->fds.p[fd].cb) { if ((rc = AppendIovsReal(m, &iv, addr, size)) != -1) { if ((rc = m->fds.p[fd].cb->writev(m->fds.p[fd].fd, iv.p, iv.i)) != -1) { SetReadAddr(m, addr, rc); } else { VERBOSEF("write(%d [%d], %p, %zu) failed: %s", fd, m->fds.p[fd].fd, addr, size, strerror(errno)); } } } else { VERBOSEF("write(%d, %p, %zu) bad fd", fd, addr, size); rc = ebadf(); } FreeIovs(&iv); return rc; } static ssize_t OpPwrite(struct Machine *m, int fd, int64_t addr, size_t size, int64_t offset) { ssize_t rc; struct Iovs iv; InitIovs(&iv); if ((rc = XlatFd(m, fd)) != -1) { fd = rc; if ((rc = AppendIovsReal(m, &iv, addr, size)) != -1) { if ((rc = pwritev(fd, iv.p, iv.i, offset)) != -1) { SetReadAddr(m, addr, rc); } } } FreeIovs(&iv); return rc; } static int IoctlTiocgwinsz(struct Machine *m, int fd, int64_t addr, int (*fn)(int, uint64_t, void *)) { int rc; struct winsize ws; if ((rc = fn(fd, TIOCGWINSZ, &ws)) != -1) { VirtualRecvWrite(m, addr, &ws, sizeof(ws)); } return rc; } static int IoctlTcgets(struct Machine *m, int fd, int64_t addr, int (*fn)(int, uint64_t, void *)) { int rc; struct termios tio, tio2; if ((rc = fn(fd, TCGETS, &tio)) != -1) { memcpy(&tio2, &tio, sizeof(tio)); tio2.c_iflag = 0; if (tio.c_lflag & ISIG) tio2.c_lflag |= ISIG_LINUX; if (tio.c_lflag & ICANON) tio2.c_lflag |= ICANON_LINUX; if (tio.c_lflag & ECHO) tio2.c_lflag |= ECHO_LINUX; tio2.c_oflag = 0; if (tio.c_oflag & OPOST) tio2.c_oflag |= OPOST_LINUX; VirtualRecvWrite(m, addr, &tio2, sizeof(tio2)); } return rc; } static int IoctlTcsets(struct Machine *m, int fd, int64_t request, int64_t addr, int (*fn)(int, uint64_t, void *)) { struct termios tio, tio2; VirtualSendRead(m, &tio, addr, sizeof(tio)); memcpy(&tio2, &tio, sizeof(tio)); tio2.c_iflag = 0; if (tio.c_lflag & ISIG_LINUX) tio2.c_lflag |= ISIG; if (tio.c_lflag & ICANON_LINUX) tio2.c_lflag |= ICANON; if (tio.c_lflag & ECHO_LINUX) tio2.c_lflag |= ECHO; tio2.c_oflag = 0; if (tio.c_oflag & OPOST_LINUX) tio2.c_oflag |= OPOST; return fn(fd, request, &tio2); } static int OpIoctl(struct Machine *m, int fd, uint64_t request, int64_t addr) { int (*fn)(int, uint64_t, void *); if (!(0 <= fd && fd < m->fds.i) || !m->fds.p[fd].cb) return ebadf(); fn = m->fds.p[fd].cb->ioctl; fd = m->fds.p[fd].fd; switch (request) { case TIOCGWINSZ_LINUX: return IoctlTiocgwinsz(m, fd, addr, fn); case TCGETS_LINUX: return IoctlTcgets(m, fd, addr, fn); case TCSETS_LINUX: return IoctlTcsets(m, fd, TCSETS, addr, fn); case TCSETSW_LINUX: return IoctlTcsets(m, fd, TCSETSW, addr, fn); case TCSETSF_LINUX: return IoctlTcsets(m, fd, TCSETSF, addr, fn); default: return einval(); } } static ssize_t OpReadv(struct Machine *m, int fd, int64_t iovaddr, int iovlen) { ssize_t rc; struct Iovs iv; InitIovs(&iv); if ((0 <= fd && fd < m->fds.i) && m->fds.p[fd].cb) { if ((rc = AppendIovsGuest(m, &iv, iovaddr, iovlen)) != -1) { rc = m->fds.p[fd].cb->readv(m->fds.p[fd].fd, iv.p, iv.i); } } else { rc = ebadf(); } FreeIovs(&iv); return rc; } static ssize_t OpWritev(struct Machine *m, int fd, int64_t iovaddr, int iovlen) { ssize_t rc; struct Iovs iv; InitIovs(&iv); if ((0 <= fd && fd < m->fds.i) && m->fds.p[fd].cb) { if ((rc = AppendIovsGuest(m, &iv, iovaddr, iovlen)) != -1) { rc = m->fds.p[fd].cb->writev(m->fds.p[fd].fd, iv.p, iv.i); } } else { rc = ebadf(); } FreeIovs(&iv); return rc; } static int64_t OpLseek(struct Machine *m, int fd, int64_t offset, int whence) { if ((fd = XlatFd(m, fd)) == -1) return -1; return lseek(fd, offset, whence); } static ssize_t OpFtruncate(struct Machine *m, int fd, int64_t size) { if ((fd = XlatFd(m, fd)) == -1) return -1; return ftruncate(fd, size); } static int OpFaccessat(struct Machine *m, int dirfd, int64_t path, int mode, int flags) { flags = XlatAtf(flags); mode = XlatAccess(mode); if ((dirfd = XlatAfd(m, dirfd)) == -1) return -1; return faccessat(dirfd, LoadStr(m, path), mode, flags); } static int OpFstatat(struct Machine *m, int dirfd, int64_t path, int64_t staddr, int flags) { int rc; struct stat st; flags = XlatAtf(flags); if ((dirfd = XlatAfd(m, dirfd)) == -1) return -1; if ((rc = fstatat(dirfd, LoadStr(m, path), &st, flags)) != -1) { VirtualRecvWrite(m, staddr, &st, sizeof(struct stat)); } return rc; } static int OpFstat(struct Machine *m, int fd, int64_t staddr) { int rc; struct stat st; if ((fd = XlatFd(m, fd)) == -1) return -1; if ((rc = fstat(fd, &st)) != -1) { VirtualRecvWrite(m, staddr, &st, sizeof(struct stat)); } return rc; } static int OpListen(struct Machine *m, int fd, int backlog) { if ((fd = XlatFd(m, fd)) == -1) return -1; return listen(fd, backlog); } static int OpShutdown(struct Machine *m, int fd, int how) { if ((fd = XlatFd(m, fd)) == -1) return -1; return shutdown(fd, how); } static int OpFsync(struct Machine *m, int fd) { if ((fd = XlatFd(m, fd)) == -1) return -1; return fsync(fd); } static int OpFdatasync(struct Machine *m, int fd) { if ((fd = XlatFd(m, fd)) == -1) return -1; return fdatasync(fd); } static int OpFchmod(struct Machine *m, int fd, uint32_t mode) { if ((fd = XlatFd(m, fd)) == -1) return -1; return fchmod(fd, mode); } static int OpFcntl(struct Machine *m, int fd, int cmd, int arg) { if ((cmd = XlatFcntlCmd(cmd)) == -1) return -1; if ((arg = XlatFcntlArg(arg)) == -1) return -1; if ((fd = XlatFd(m, fd)) == -1) return -1; return fcntl(fd, cmd, arg); } static int OpFadvise(struct Machine *m, int fd, uint64_t offset, uint64_t len, int advice) { if ((fd = XlatFd(m, fd)) == -1) return -1; if ((advice = XlatAdvice(advice)) == -1) return -1; return fadvise(fd, offset, len, advice); } static int OpFlock(struct Machine *m, int fd, int lock) { if ((fd = XlatFd(m, fd)) == -1) return -1; if ((lock = XlatLock(lock)) == -1) return -1; return flock(fd, lock); } static int OpChdir(struct Machine *m, int64_t path) { return chdir(LoadStr(m, path)); } static int OpMkdir(struct Machine *m, int64_t path, int mode) { return mkdir(LoadStr(m, path), mode); } static int OpMknod(struct Machine *m, int64_t path, uint32_t mode, uint64_t dev) { return mknod(LoadStr(m, path), mode, dev); } static int OpRmdir(struct Machine *m, int64_t path) { return rmdir(LoadStr(m, path)); } static int OpUnlink(struct Machine *m, int64_t path) { return unlink(LoadStr(m, path)); } static int OpRename(struct Machine *m, int64_t src, int64_t dst) { return rename(LoadStr(m, src), LoadStr(m, dst)); } static int OpTruncate(struct Machine *m, int64_t path, uint64_t length) { return truncate(LoadStr(m, path), length); } static int OpLink(struct Machine *m, int64_t existingpath, int64_t newpath) { return link(LoadStr(m, existingpath), LoadStr(m, newpath)); } static int OpSymlink(struct Machine *m, int64_t target, int64_t linkpath) { return symlink(LoadStr(m, target), LoadStr(m, linkpath)); } static int OpChmod(struct Machine *m, int64_t path, uint32_t mode) { return chmod(LoadStr(m, path), mode); } static int OpFork(struct Machine *m) { return enosys(); } static int OpExecve(struct Machine *m, int64_t programaddr, int64_t argvaddr, int64_t envpaddr) { return enosys(); } static int OpWait4(struct Machine *m, int pid, int64_t opt_out_wstatus_addr, int options, int64_t opt_out_rusage_addr) { int rc; int32_t wstatus; struct rusage rusage; if ((options = XlatWait(options)) == -1) return -1; if ((rc = wait4(pid, &wstatus, options, &rusage)) != -1) { if (opt_out_wstatus_addr) { VirtualRecvWrite(m, opt_out_wstatus_addr, &wstatus, sizeof(wstatus)); } if (opt_out_rusage_addr) { VirtualRecvWrite(m, opt_out_rusage_addr, &rusage, sizeof(rusage)); } } return rc; } static int OpGetrusage(struct Machine *m, int resource, int64_t rusageaddr) { int rc; struct rusage rusage; if ((resource = XlatRusage(resource)) == -1) return -1; if ((rc = getrusage(resource, &rusage)) != -1) { VirtualRecvWrite(m, rusageaddr, &rusage, sizeof(rusage)); } return rc; } static int OpGetrlimit(struct Machine *m, int resource, int64_t rlimitaddr) { return enosys(); } static int64_t OpGetcwd(struct Machine *m, int64_t bufaddr, size_t size) { size_t n; char *buf; int64_t res; size = MIN(size, PATH_MAX); if (!(buf = malloc(size))) return enomem(); if ((getcwd)(buf, size)) { n = strlen(buf); VirtualRecvWrite(m, bufaddr, buf, n); res = bufaddr; } else { res = -1; } free(buf); return res; } static int OpSigaction(struct Machine *m, int sig, int64_t act, int64_t old) { return 0; int rc; struct OpSigactionMemory { struct sigaction act, old; uint8_t b[sizeof(struct sigaction$linux)]; void *p[2]; } * mem; if (!(mem = malloc(sizeof(*mem)))) return enomem(); if ((rc = sigaction( XlatSignal(sig), CoerceSigactionToCosmo( &mem->act, LoadBuf(m, act, sizeof(struct sigaction$linux))), &mem->old)) != -1) { CoerceSigactionToLinux(BeginStoreNp(m, old, sizeof(mem->b), mem->p, mem->b), &mem->old); EndStoreNp(m, old, sizeof(mem->b), mem->p, mem->b); } free(mem); return rc; } static int OpNanosleep(struct Machine *m, int64_t req, int64_t rem) { int rc; void *p[2]; uint8_t b[sizeof(struct timespec)]; if ((rc = nanosleep(LoadBuf(m, req, sizeof(b)), BeginStoreNp(m, rem, sizeof(b), p, b))) != -1) { EndStoreNp(m, rem, sizeof(b), p, b); } return rc; } static int OpSigsuspend(struct Machine *m, int64_t maskaddr) { void *p; sigset_t mask; if (!(p = LoadBuf(m, maskaddr, 8))) return efault(); memset(&mask, 0, sizeof(mask)); memcpy(&mask, p, 8); return sigsuspend(&mask); } static int OpClockGettime(struct Machine *m, int clockid, int64_t ts) { int rc; void *tsp[2]; uint8_t tsb[sizeof(struct timespec)]; if ((rc = clock_gettime(XlatClock(clockid), BeginStoreNp(m, ts, sizeof(tsb), tsp, tsb))) != -1) { EndStoreNp(m, ts, sizeof(tsb), tsp, tsb); } return rc; } static int OpGettimeofday(struct Machine *m, int64_t tv, int64_t tz) { int rc; void *tvp[2], *tzp[2]; uint8_t tvb[sizeof(struct timeval)]; uint8_t tzb[sizeof(struct timezone)]; if ((rc = gettimeofday(BeginStoreNp(m, tv, sizeof(tvb), tvp, tvb), BeginStoreNp(m, tz, sizeof(tzb), tzp, tzb))) != -1) { EndStoreNp(m, tv, sizeof(tvb), tvp, tvb); EndStoreNp(m, tz, sizeof(tzb), tzp, tzb); } return rc; } static int OpPoll(struct Machine *m, int64_t fdsaddr, uint64_t nfds, int32_t timeout_ms) { int count, i; uint64_t fdssize; struct pollfd *hostfds, *guestfds; if (!__builtin_mul_overflow(nfds, sizeof(struct pollfd), &fdssize) && fdssize <= 0x7ffff000) { hostfds = malloc(fdssize); guestfds = malloc(fdssize); if (hostfds && guestfds) { VirtualSendRead(m, guestfds, fdsaddr, fdssize); memcpy(hostfds, guestfds, fdssize); for (i = 0; i < nfds; ++i) { hostfds[i].fd = XlatFd(m, hostfds[i].fd); } if ((count = poll(hostfds, nfds, timeout_ms)) != -1) { for (i = 0; i < count; ++i) { hostfds[i].fd = guestfds[i].fd; } VirtualRecvWrite(m, fdsaddr, hostfds, count * sizeof(struct pollfd)); } } else { count = enomem(); } free(guestfds); free(hostfds); } else { count = einval(); } return count; } static int OpSigprocmask(struct Machine *m, int how, int64_t setaddr, int64_t oldsetaddr) { int rc; sigset_t *set, oldset, ss; if (setaddr) { set = &ss; memset(set, 0, sizeof(ss)); VirtualSendRead(m, set, setaddr, 8); } else { set = NULL; } if ((rc = sigprocmask(XlatSig(how), set, &oldset)) != -1) { if (setaddr) VirtualRecvWrite(m, setaddr, set, 8); if (oldsetaddr) VirtualRecvWrite(m, oldsetaddr, &oldset, 8); } return rc; } static int OpGetPid(struct Machine *m) { return getpid(); } static int OpGetPpid(struct Machine *m) { return getppid(); } static int OpKill(struct Machine *m, int pid, int sig) { return kill(pid, sig); } static int OpGetUid(struct Machine *m) { return getuid(); } static int OpGetGid(struct Machine *m) { return getgid(); } static int OpGetTid(struct Machine *m) { return gettid(); } static int OpSchedYield(struct Machine *m) { return sched_yield(); } static int OpAlarm(struct Machine *m, unsigned seconds) { return alarm(seconds); } static int OpPause(struct Machine *m) { return pause(); } static int DoOpen(struct Machine *m, int64_t path, int flags, int mode) { return OpOpenat(m, AT_FDCWD_LINUX, path, flags, mode); } static int DoCreat(struct Machine *m, int64_t file, int mode) { return DoOpen(m, file, 0x241, mode); } static int DoAccess(struct Machine *m, int64_t path, int mode) { return OpFaccessat(m, AT_FDCWD_LINUX, path, mode, 0); } static int DoStat(struct Machine *m, int64_t path, int64_t st) { return OpFstatat(m, AT_FDCWD_LINUX, path, st, 0); } static int DoLstat(struct Machine *m, int64_t path, int64_t st) { return OpFstatat(m, AT_FDCWD_LINUX, path, st, 0x0400); } static int DoAccept(struct Machine *m, int fd, int64_t addraddr, int64_t addrsizeaddr) { return OpAccept4(m, fd, addraddr, addrsizeaddr, 0); } void OpSyscall(struct Machine *m, uint32_t rde) { uint64_t i, ax, di, si, dx, r0, r8, r9; ax = Read64(m->ax); di = Read64(m->di); si = Read64(m->si); dx = Read64(m->dx); r0 = Read64(m->r10); r8 = Read64(m->r8); r9 = Read64(m->r9); switch (ax & 0x1ff) { SYSCALL(0x000, OpRead(m, di, si, dx)); SYSCALL(0x001, OpWrite(m, di, si, dx)); SYSCALL(0x002, DoOpen(m, di, si, dx)); SYSCALL(0x003, OpClose(m, di)); SYSCALL(0x004, DoStat(m, di, si)); SYSCALL(0x005, OpFstat(m, di, si)); SYSCALL(0x006, DoLstat(m, di, si)); SYSCALL(0x007, OpPoll(m, di, si, dx)); SYSCALL(0x008, OpLseek(m, di, si, dx)); SYSCALL(0x009, OpMmap(m, di, si, dx, r0, r8, r9)); SYSCALL(0x01A, OpMsync(m, di, si, dx)); SYSCALL(0x00A, OpMprotect(m, di, si, dx)); SYSCALL(0x00B, OpMunmap(m, di, si)); SYSCALL(0x00C, OpBrk(m, di)); SYSCALL(0x00D, OpSigaction(m, di, si, dx)); SYSCALL(0x00E, OpSigprocmask(m, di, si, dx)); SYSCALL(0x010, OpIoctl(m, di, si, dx)); SYSCALL(0x011, OpPread(m, di, si, dx, r0)); SYSCALL(0x012, OpPwrite(m, di, si, dx, r0)); SYSCALL(0x013, OpReadv(m, di, si, dx)); SYSCALL(0x014, OpWritev(m, di, si, dx)); SYSCALL(0x015, DoAccess(m, di, si)); SYSCALL(0x016, OpPipe(m, di)); SYSCALL(0x017, select(di, P(si), P(dx), P(r0), P(r8))); SYSCALL(0x018, OpSchedYield(m)); SYSCALL(0x01C, OpMadvise(m, di, si, dx)); SYSCALL(0x020, OpDup(m, di)); SYSCALL(0x021, OpDup2(m, di, si)); SYSCALL(0x022, OpPause(m)); SYSCALL(0x023, OpNanosleep(m, di, si)); SYSCALL(0x024, getitimer(di, PNN(si))); SYSCALL(0x025, OpAlarm(m, di)); SYSCALL(0x026, setitimer(di, PNN(si), P(dx))); SYSCALL(0x027, OpGetPid(m)); SYSCALL(0x028, sendfile(di, si, P(dx), r0)); SYSCALL(0x029, OpSocket(m, di, si, dx)); SYSCALL(0x02A, OpConnect(m, di, si, dx)); SYSCALL(0x02B, DoAccept(m, di, di, dx)); SYSCALL(0x02C, sendto(di, PNN(si), dx, r0, P(r8), r9)); SYSCALL(0x02D, recvfrom(di, P(si), dx, r0, P(r8), P(r9))); SYSCALL(0x030, OpShutdown(m, di, si)); SYSCALL(0x031, OpBind(m, di, si, dx)); SYSCALL(0x032, OpListen(m, di, si)); SYSCALL(0x033, getsockname(di, PNN(si), PNN(dx))); SYSCALL(0x034, getpeername(di, PNN(si), PNN(dx))); SYSCALL(0x036, OpSetsockopt(m, di, si, dx, r0, r8)); SYSCALL(0x037, getsockopt(di, si, dx, PNN(r0), PNN(r8))); SYSCALL(0x039, OpFork(m)); SYSCALL(0x03B, OpExecve(m, di, si, dx)); SYSCALL(0x03D, OpWait4(m, di, si, dx, r0)); SYSCALL(0x03E, OpKill(m, di, si)); SYSCALL(0x03F, uname(P(di))); SYSCALL(0x048, OpFcntl(m, di, si, dx)); SYSCALL(0x049, OpFlock(m, di, si)); SYSCALL(0x04A, OpFsync(m, di)); SYSCALL(0x04B, OpFdatasync(m, di)); SYSCALL(0x04C, OpTruncate(m, di, si)); SYSCALL(0x04D, OpFtruncate(m, di, si)); SYSCALL(0x04F, OpGetcwd(m, di, si)); SYSCALL(0x050, OpChdir(m, di)); SYSCALL(0x052, OpRename(m, di, si)); SYSCALL(0x053, OpMkdir(m, di, si)); SYSCALL(0x054, OpRmdir(m, di)); SYSCALL(0x055, DoCreat(m, di, si)); SYSCALL(0x056, OpLink(m, di, si)); SYSCALL(0x057, OpUnlink(m, di)); SYSCALL(0x058, OpSymlink(m, di, si)); SYSCALL(0x05A, OpChmod(m, di, si)); SYSCALL(0x05B, OpFchmod(m, di, si)); SYSCALL(0x060, OpGettimeofday(m, di, si)); SYSCALL(0x061, OpGetrlimit(m, di, si)); SYSCALL(0x062, OpGetrusage(m, di, si)); SYSCALL(0x063, sysinfo(PNN(di))); SYSCALL(0x064, times(PNN(di))); SYSCALL(0x066, OpGetUid(m)); SYSCALL(0x068, OpGetGid(m)); SYSCALL(0x06E, OpGetPpid(m)); SYSCALL(0x075, setresuid(di, si, dx)); SYSCALL(0x077, setresgid(di, si, dx)); SYSCALL(0x082, OpSigsuspend(m, di)); SYSCALL(0x085, OpMknod(m, di, si, dx)); SYSCALL(0x08C, getpriority(di, si)); SYSCALL(0x08D, setpriority(di, si, dx)); SYSCALL(0x0A0, setrlimit(di, P(si))); SYSCALL(0x084, utime(PNN(di), PNN(si))); SYSCALL(0x0EB, utimes(P(di), P(si))); SYSCALL(0x09E, OpArchPrctl(m, di, si)); SYSCALL(0x0BA, OpGetTid(m)); SYSCALL(0x0CB, sched_setaffinity(di, si, P(dx))); SYSCALL(0x0DD, OpFadvise(m, di, si, dx, r0)); SYSCALL(0x0E4, OpClockGettime(m, di, si)); SYSCALL(0x101, OpOpenat(m, di, si, dx, r0)); SYSCALL(0x102, mkdirat(XlatAfd(m, di), P(si), dx)); SYSCALL(0x104, fchownat(XlatAfd(m, di), P(si), dx, r0, XlatAtf(r8))); SYSCALL(0x105, futimesat(XlatAfd(m, di), P(si), P(dx))); SYSCALL(0x106, OpFstatat(m, di, si, dx, r0)); SYSCALL(0x107, unlinkat(XlatAfd(m, di), P(si), XlatAtf(dx))); SYSCALL(0x108, renameat(XlatAfd(m, di), P(si), XlatAfd(m, dx), P(r0))); SYSCALL(0x10D, OpFaccessat(m, di, si, dx, r0)); SYSCALL(0x113, splice(di, P(si), dx, P(r0), r8, XlatAtf(r9))); SYSCALL(0x115, sync_file_range(di, si, dx, XlatAtf(r0))); SYSCALL(0x118, utimensat(XlatAfd(m, di), P(si), P(dx), XlatAtf(r0))); SYSCALL(0x120, OpAccept4(m, di, si, dx, r0)); SYSCALL(0x177, vmsplice(di, P(si), dx, r0)); CASE(0xE7, HaltMachine(m, di | 0x100)); default: VERBOSEF("missing syscall 0x%03x", ax); ax = enosys(); break; } Write64(m->ax, ax != -1 ? ax : -(XlatErrno(errno) & 0xfff)); for (i = 0; i < m->freelist.i; ++i) free(m->freelist.p[i]); m->freelist.i = 0; }