/* clang-format off */ //= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a fairly generic conversion from a wider to a narrower // IEEE-754 floating-point type in the default (round to nearest, ties to even) // rounding mode. The constants and types defined following the includes below // parameterize the conversion. // // This routine can be trivially adapted to support conversions to // half-precision or from quad-precision. It does not support types that don't // use the usual IEEE-754 interchange formats; specifically, some work would be // needed to adapt it to (for example) the Intel 80-bit format or PowerPC // double-double format. // // Note please, however, that this implementation is only intended to support // *narrowing* operations; if you need to convert to a *wider* floating-point // type (e.g. float -> double), then this routine will not do what you want it // to. // // It also requires that integer types at least as large as both formats // are available on the target platform; this may pose a problem when trying // to add support for quad on some 32-bit systems, for example. // // Finally, the following assumptions are made: // // 1. floating-point types and integer types have the same endianness on the // target platform // // 2. quiet NaNs, if supported, are indicated by the leading bit of the // significand field being set // //===----------------------------------------------------------------------===// #include "third_party/compiler_rt/fp_trunc_common.inc" #include "libc/literal.h" static __inline dst_t __truncXfYf2__(src_t a) { // Various constants whose values follow from the type parameters. // Any reasonable optimizer will fold and propagate all of these. const int srcBits = sizeof(src_t)*CHAR_BIT; const int srcExpBits = srcBits - srcSigBits - 1; const int srcInfExp = (1u << srcExpBits) - 1; const int srcExpBias = srcInfExp >> 1; const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits; const src_rep_t srcSignificandMask = srcMinNormal - 1; const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits; const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits); const src_rep_t srcAbsMask = srcSignMask - 1; const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1; const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1); const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1); const src_rep_t srcNaNCode = srcQNaN - 1; const int dstBits = sizeof(dst_t)*CHAR_BIT; const int dstExpBits = dstBits - dstSigBits - 1; const int dstInfExp = (1u << dstExpBits) - 1; const int dstExpBias = dstInfExp >> 1; const int underflowExponent = srcExpBias + 1 - dstExpBias; const int overflowExponent = srcExpBias + dstInfExp - dstExpBias; const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits; const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits; const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1); const dst_rep_t dstNaNCode = dstQNaN - 1; // Break a into a sign and representation of the absolute value const src_rep_t aRep = srcToRep(a); const src_rep_t aAbs = aRep & srcAbsMask; const src_rep_t sign = aRep & srcSignMask; dst_rep_t absResult; if (aAbs - underflow < aAbs - overflow) { // The exponent of a is within the range of normal numbers in the // destination format. We can convert by simply right-shifting with // rounding and adjusting the exponent. absResult = aAbs >> (srcSigBits - dstSigBits); absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits; const src_rep_t roundBits = aAbs & roundMask; // Round to nearest if (roundBits > halfway) absResult++; // Ties to even else if (roundBits == halfway) absResult += absResult & 1; } else if (aAbs > srcInfinity) { // a is NaN. // Conjure the result by beginning with infinity, setting the qNaN // bit and inserting the (truncated) trailing NaN field. absResult = (dst_rep_t)dstInfExp << dstSigBits; absResult |= dstQNaN; absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode; } else if (aAbs >= overflow) { // a overflows to infinity. absResult = (dst_rep_t)dstInfExp << dstSigBits; } else { // a underflows on conversion to the destination type or is an exact // zero. The result may be a denormal or zero. Extract the exponent // to get the shift amount for the denormalization. const int aExp = aAbs >> srcSigBits; const int shift = srcExpBias - dstExpBias - aExp + 1; const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal; // Right shift by the denormalization amount with sticky. if (shift > srcSigBits) { absResult = 0; } else { const bool sticky = significand << (srcBits - shift); src_rep_t denormalizedSignificand = significand >> shift | sticky; absResult = denormalizedSignificand >> (srcSigBits - dstSigBits); const src_rep_t roundBits = denormalizedSignificand & roundMask; // Round to nearest if (roundBits > halfway) absResult++; // Ties to even else if (roundBits == halfway) absResult += absResult & 1; } } // Apply the signbit to (dst_t)abs(a). const dst_rep_t result = absResult | sign >> (srcBits - dstBits); return dstFromRep(result); }