/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright 1995-2016 Mark Adler │ │ Use of this source code is governed by the BSD-style licenses that can │ │ be found in the third_party/zlib/LICENSE file. │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/str/str.h" #include "third_party/zlib/chunkcopy.h" #include "third_party/zlib/inffast.h" #include "third_party/zlib/inflate.h" #include "third_party/zlib/inftrees.h" #include "third_party/zlib/internal.h" #include "third_party/zlib/zutil.h" asm(".ident\t\"\\n\\n\ zlib (zlib License)\\n\ Copyright 1995-2017 Jean-loup Gailly and Mark Adler\""); asm(".include \"libc/disclaimer.inc\""); /** * @fileoverview zlib decompression * * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ #ifdef MAKEFIXED #ifndef BUILDFIXED #define BUILDFIXED #endif #endif /* permutation of code lengths */ static const unsigned short kZlibDeflateOrder[19] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; static int inflateStateCheck(z_streamp strm); static void fixedtables(struct InflateState *state); static int updatewindow(z_streamp strm, const unsigned char *end, unsigned copy); static unsigned syncsearch(unsigned *have, const unsigned char *buf, unsigned len); #ifdef BUILDFIXED void makefixed(void); #endif static int inflateStateCheck(z_streamp strm) { struct InflateState *state; if (strm == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) return 1; state = (struct InflateState *)strm->state; if (state == Z_NULL || state->strm != strm || state->mode < HEAD || state->mode > SYNC) return 1; return 0; } int inflateResetKeep(z_streamp strm) { struct InflateState *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int inflateReset(z_streamp strm) { struct InflateState *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int inflateReset2(z_streamp strm, int windowBits) { int wrap; struct InflateState *state; /* get the state */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 5; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int inflateInit2(z_streamp strm, int windowBits) { int ret; struct InflateState *state; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { strm->zalloc = zcalloc; strm->opaque = (voidpf)0; } if (strm->zfree == (free_func)0) { strm->zfree = zcfree; } state = (struct InflateState *)ZALLOC(strm, 1, sizeof(struct InflateState)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct DeflateState *)state; state->strm = strm; state->window = Z_NULL; state->mode = HEAD; /* to pass state test in inflateReset2() */ state->check = 1L; /* 1L is the result of adler32() zero length data */ ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int inflatePrime(z_streamp strm, int bits, int value) { struct InflateState *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + (uInt)bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += (unsigned)value << state->bits; state->bits += (uInt)bits; return Z_OK; } /** * Returns state with length and distance decoding tables and index * sizes set to fixed code decoding. Normally this returns fixed tables * from inffixed.h. If BUILDFIXED is defined, then instead this routine * builds the tables the first time it's called, and returns those * tables the first time and thereafter. This reduces the size of the * code by about 2K bytes, in exchange for a little execution time. * However, BUILDFIXED should not be used for threaded applications, * since the rewriting of the tables and virgin may not be thread-safe. */ static void fixedtables(struct InflateState *state) { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } state->lencode = lenfix; state->distcode = distfix; #else /* !BUILDFIXED */ state->lencode = kZlibLenfix; state->distcode = kZlibDistfix; #endif /* BUILDFIXED */ state->lenbits = 9; state->distbits = 5; } #ifdef MAKEFIXED #include "libc/stdio/stdio.h" /** * Writes inffixed.h that is #include'd above. Defining MAKEFIXED also * defines BUILDFIXED, so the tables are built on the fly. makefixed() * writes those tables to stdout, which would be piped to inffixed.h. A * small program can simply call makefixed to do this: * * void makefixed(void); * * int main(void) { * makefixed(); * return 0; * } * * Then that can be linked with zlib built with MAKEFIXED defined and run: * * a.out > inffixed.h */ void makefixed(void) { unsigned low, size; struct InflateState state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const zcode lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const zcode distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /** * Updates window with last wsize (normally 32K) bytes written before * returning. If window does not exist yet, create it. This is only * called when a window is already in use, or when output has been * written during this inflate call, but the end of the deflate stream * has not been reached yet. It is also called to create a window for * dictionary data when a dictionary is loaded. * * Providing output buffers larger than 32K to inflate() should provide * a speed advantage, since only the last 32K of output is copied to the * sliding window upon return from inflate(), and since all distances * after the first 32K of output will fall in the output data, making * match copies simpler and faster. The advantage may be dependent on * the size of the processor's data caches. */ static int updatewindow(z_streamp strm, const Bytef *end, unsigned copy) { struct InflateState *state; unsigned dist; state = (struct InflateState *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { unsigned wsize = 1U << state->wbits; state->window = (unsigned char *)ZALLOC(strm, wsize + CHUNKCOPY_CHUNK_SIZE, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; #ifdef INFLATE_CLEAR_UNUSED_UNDEFINED /* Copies from the overflow portion of this buffer are undefined and may cause analysis tools to raise a warning if we don't initialize it. However, this undefined data overwrites other undefined data and is subsequently either overwritten or left deliberately undefined at the end of decode; so there's really no point. */ memset(state->window + wsize, 0, CHUNKCOPY_CHUNK_SIZE); #endif } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { memcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; memcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { memcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP #define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else #define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP #define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) #define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /** * inflate() uses a state machine to process as much input data and * generate as much output data as possible before returning. The state * machine is structured roughly as follows: * * for (;;) switch (state) { * ... * case STATEn: * if (not enough input data or output space to make progress) * return; * ... make progress ... * state = STATEm; * break; * ... * } * * so when inflate() is called again, the same case is attempted again, * and if the appropriate resources are provided, the machine proceeds * to the next state. The NEEDBITS() macro is usually the way the state * evaluates whether it can proceed or should return. NEEDBITS() does * the return if the requested bits are not available. The typical use * of the BITS macros is: * * NEEDBITS(n); * ... do something with BITS(n) ... * DROPBITS(n); * * where NEEDBITS(n) either returns from inflate() if there isn't enough * input left to load n bits into the accumulator, or it continues. * BITS(n) gives the low n bits in the accumulator. When done, * DROPBITS(n) drops the low n bits off the accumulator. INITBITS() * clears the accumulator and sets the number of available bits to zero. * BYTEBITS() discards just enough bits to put the accumulator on a byte * boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would * return the next byte in the stream. * * NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to * return if there is no input available. The decoding of variable * length codes uses PULLBYTE() directly in order to pull just enough * bytes to decode the next code, and no more. * * Some states loop until they get enough input, making sure that enough * state information is maintained to continue the loop where it left * off if NEEDBITS() returns in the loop. For example, want, need, and * keep would all have to actually be part of the saved state in case * NEEDBITS() returns: * * case STATEw: * while (want < need) { * NEEDBITS(n); * keep[want++] = BITS(n); * DROPBITS(n); * } * state = STATEx; * case STATEx: * * As shown above, if the next state is also the next case, then the * break is omitted. * * A state may also return if there is not enough output space available * to complete that state. Those states are copying stored data, writing * a literal byte, and copying a matching string. * * When returning, a "goto inf_leave" is used to update the total * counters, update the check value, and determine whether any progress * has been made during that inflate() call in order to return the * proper return code. Progress is defined as a change in either * strm->avail_in or strm->avail_out. When there is a window, goto * inf_leave will update the window with the last output written. If a * goto inf_leave occurs in the middle of decompression and there is no * window currently, goto inf_leave will create one and copy output to * the window for the next call of inflate(). * * In this implementation, the flush parameter of inflate() only affects * the return code (per zlib.h). inflate() always writes as much as * possible to strm->next_out, given the space available and the * provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. * Furthermore, inflate() always defers the allocation of and copying * into a sliding window until necessary, which provides the effect * documented in zlib.h for Z_FINISH when the entire input stream * available. So the only thing the flush parameter actually does is: * when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead * it will return Z_BUF_ERROR if it has not reached the end of the * stream. */ int inflate(z_streamp strm, int flush) { struct InflateState *state; const unsigned char *next; /* next input */ unsigned char *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char *from; /* where to copy match bytes from */ struct zcode here; /* current decoding table entry */ struct zcode last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif if (inflateStateCheck(strm) || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) { return Z_STREAM_ERROR; } state = (struct InflateState *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) { switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ if (state->wbits == 0) state->wbits = 15; state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; if (len > 15 || len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if ((state->flags & 0x0200) && (state->wrap & 4)) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if ((state->flags & 0x0200) && (state->wrap & 4)) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if ((state->flags & 0x0200) && (state->wrap & 4)) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN; case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if ((state->flags & 0x0200) && (state->wrap & 4)) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA; case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; memcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if ((state->flags & 0x0200) && (state->wrap & 4)) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME; case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = (Bytef)len; } while (len && copy < have); if ((state->flags & 0x0200) && (state->wrap & 4)) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT; case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = (Bytef)len; } while (len && copy < have); if ((state->flags & 0x0200) && (state->wrap & 4)) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC; case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if ((state->wrap & 4) && hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT; case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE; case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave; case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave; case COPY_: state->mode = COPY; case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; memcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[kZlibDeflateOrder[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) { state->lens[kZlibDeflateOrder[state->have++]] = 0; } state->next = state->codes; state->lencode = (const struct zcode *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const struct zcode *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const struct zcode *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave; case LEN_: state->mode = LEN; case LEN: if (have >= INFLATE_FAST_MIN_INPUT && left >= INFLATE_FAST_MIN_OUTPUT) { RESTORE(); inflate_fast_chunk(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT; case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST; case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT; case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH; case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, "inflate.c too far\n")); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (--copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else { from = state->window + (state->wnext - copy); } if (copy > state->length) copy = state->length; if (copy > left) copy = left; put = chunkcopy_safe(put, from, copy, put + left); } else { /* copy from output */ copy = state->length; if (copy > left) copy = left; put = chunkcopy_lapped_safe(put, state->offset, copy, put + left); } left -= copy; state->length -= copy; if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if ((state->wrap & 4) && out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if ((state->wrap & 4) && ( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH; case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE; case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: /* We write a defined value in the unused space to help mark * where the stream has ended. We don't use zeros as that can * mislead clients relying on undefined behavior (i.e. assuming * that the data is over when the buffer has a zero/null value). */ if (left >= CHUNKCOPY_CHUNK_SIZE) { memset(put, 0x55, CHUNKCOPY_CHUNK_SIZE); } else { memset(put, 0x55, left); } RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if ((state->wrap & 4) && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = (int)state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int inflateEnd(z_streamp strm) { struct InflateState *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int inflateGetDictionary(z_streamp strm, Bytef *dictionary, uInt *dictLength) { struct InflateState *state; /* check state */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { memcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); memcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int inflateSetDictionary(z_streamp strm, const Bytef *dictionary, uInt dictLength) { struct InflateState *state; unsigned long dictid; int ret; /* check state */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int inflateGetHeader(z_streamp strm, gz_headerp head) { struct InflateState *state; /* check state */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /** * Searches buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when * found or when out of input. When called, *have is the number of * pattern bytes found in order so far, in 0..3. On return *have is * updated to the new state. If on return *have equals four, then the * pattern was found and the return value is how many bytes were read * including the last byte of the pattern. If *have is less than four, * then the pattern has not been found yet and the return value is len. * In the latter case, syncsearch() can be called again with more data * and the *have state. *have is initialized to zero for the first call. */ static unsigned syncsearch(unsigned *have, const unsigned char *buf, unsigned len) { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int inflateSync(z_streamp strm) { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct InflateState *state; /* check parameters */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /** * Returns true if inflate is currently at the end of a block generated * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP * implementation to provide an additional safety check. PPP uses * Z_SYNC_FLUSH but removes the length bytes of the resulting empty * stored block. When decompressing, PPP checks that at the end of input * packet, inflate is waiting for these length bytes. */ int inflateSyncPoint(z_streamp strm) { struct InflateState *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; return state->mode == STORED && state->bits == 0; } int inflateCopy(z_streamp dest, z_streamp source) { struct InflateState *state; struct InflateState *copy; unsigned char *window; unsigned wsize; /* check input */ if (inflateStateCheck(source) || dest == Z_NULL) return Z_STREAM_ERROR; state = (struct InflateState *)source->state; /* allocate space */ copy = (struct InflateState *)ZALLOC(source, 1, sizeof(struct InflateState)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char *)ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ memcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); memcpy((voidpf)copy, (voidpf)state, sizeof(struct InflateState)); copy->strm = dest; if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; memcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct DeflateState *)copy; return Z_OK; } int inflateUndermine(z_streamp strm, int subvert) { struct InflateState *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR state->sane = !subvert; return Z_OK; #else (void)subvert; state->sane = 1; return Z_DATA_ERROR; #endif } int inflateValidate(z_streamp strm, int check) { struct InflateState *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct InflateState *)strm->state; if (check) state->wrap |= 4; else state->wrap &= ~4; return Z_OK; } long inflateMark(z_streamp strm) { struct InflateState *state; if (inflateStateCheck(strm)) return -(1L << 16); state = (struct InflateState *)strm->state; return (long)(((unsigned long)((long)state->back)) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } unsigned long inflateCodesUsed(z_streamp strm) { struct InflateState *state; if (inflateStateCheck(strm)) return (unsigned long)-1; state = (struct InflateState *)strm->state; return (unsigned long)(state->next - state->codes); }