/********************************************************************* * Filename: sha256.c * Author: Brad Conte (brad AT bradconte.com) * Copyright: * Disclaimer: This code is presented "as is" without any guarantees. * Details: Implementation of the SHA-256 hashing algorithm. SHA-256 is one of the three algorithms in the SHA2 specification. The others, SHA-384 and SHA-512, are not offered in this implementation. Algorithm specification can be found here: * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf This implementation uses little endian byte order. *********************************************************************/ #include "libc/bits/safemacros.internal.h" #include "libc/dce.h" #include "libc/nexgen32e/x86feature.h" #include "libc/str/internal.h" #include "libc/str/sha256.h" #define ROTLEFT(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) #define ROTRIGHT(a, b) (((a) >> (b)) | ((a) << (32 - (b)))) #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22)) #define EP1(x) (ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25)) #define SIG0(x) (ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ ((x) >> 3)) #define SIG1(x) (ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ ((x) >> 10)) static void sha256_transform(uint32_t state[hasatleast 8], const uint8_t data[hasatleast 64]) { size_t i; uint32_t a, b, c, d, e, f, g, h, t1, t2, m[64]; for (i = 0; i < 16; ++i, data += 4) { m[i] = (uint32_t)data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3]; } for (; i < 64; ++i) { m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16]; } a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; for (i = 0; i < 64; ++i) { t1 = h + EP1(e) + CH(e, f, g) + kSha256Tab[i] + m[i]; t2 = EP0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } void sha256_init(struct Sha256Ctx *ctx) { ctx->datalen = 0; ctx->bitlen = 0; ctx->state[0] = 0x6a09e667; ctx->state[1] = 0xbb67ae85; ctx->state[2] = 0x3c6ef372; ctx->state[3] = 0xa54ff53a; ctx->state[4] = 0x510e527f; ctx->state[5] = 0x9b05688c; ctx->state[6] = 0x1f83d9ab; ctx->state[7] = 0x5be0cd19; } void sha256_update(struct Sha256Ctx *ctx, const uint8_t *data, size_t size) { size_t i; i = 0; #if 0 if (!IsTiny() && size >= 64 && (X86_HAVE(SHA) && X86_HAVE(SSE4_1) && X86_HAVE(SSSE3))) { sha256$x86(ctx->state, data, size); i += rounddown(size, 16); } #endif for (; i < size; ++i) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if (ctx->datalen == 64) { sha256_transform(ctx->state, ctx->data); ctx->bitlen += 512; ctx->datalen = 0; } } } void sha256_final(struct Sha256Ctx *ctx, uint8_t *hash) { size_t i; i = ctx->datalen; if (ctx->datalen < 56) { ctx->data[i++] = 0x80; while (i < 56) ctx->data[i++] = 0x00; } else { ctx->data[i++] = 0x80; while (i < 64) ctx->data[i++] = 0x00; sha256_transform(ctx->state, ctx->data); memset(ctx->data, 0, 56); } ctx->bitlen += ctx->datalen * 8; ctx->data[63] = ctx->bitlen; ctx->data[62] = ctx->bitlen >> 8; ctx->data[61] = ctx->bitlen >> 16; ctx->data[60] = ctx->bitlen >> 24; ctx->data[59] = ctx->bitlen >> 32; ctx->data[58] = ctx->bitlen >> 40; ctx->data[57] = ctx->bitlen >> 48; ctx->data[56] = ctx->bitlen >> 56; sha256_transform(ctx->state, ctx->data); for (i = 0; i < 4; ++i) { hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff; hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff; hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff; hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff; hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff; hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff; hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff; hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff; } }