/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright 2020 Justine Alexandra Roberts Tunney │ │ │ │ This program is free software; you can redistribute it and/or modify │ │ it under the terms of the GNU General Public License as published by │ │ the Free Software Foundation; version 2 of the License. │ │ │ │ This program is distributed in the hope that it will be useful, but │ │ WITHOUT ANY WARRANTY; without even the implied warranty of │ │ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │ │ General Public License for more details. │ │ │ │ You should have received a copy of the GNU General Public License │ │ along with this program; if not, write to the Free Software │ │ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │ │ 02110-1301 USA │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "dsp/core/q.h" #include "libc/assert.h" #include "libc/dce.h" #include "libc/limits.h" #include "libc/macros.h" #include "libc/math.h" #include "libc/str/str.h" /** * Precomputes integers that can replace floating-point operands. * * “G-d made the integers, all else is the work of man. * — Leopold Kronecker * * This function shifts the decimal point to the left: * * 𝑛ᵢ ← ROUND[𝑐ᵢ × 2ᵐ] + φᵢ * * With extra effort to compute φ which is normally all zeroes but gives * us better rounding when it isn't. It's assumed optimized coefficients * will be used like this: * * (Σᵢ𝑥ᵢ𝑛ᵢ + 2⁽ᵐ⁻¹⁾) / 2ᵐ where 𝑥∈[𝐿,𝐻] and 𝑖∈[0,6) * * Intended to compute this * * ROUND[Σᵢ𝑥ᵢ𝑐ᵢ] * * As accurately or approximately as you want it to be. Popular scaling * factors are 7, 15, 16, 22, and 31. Building this code under MODE=tiny * will DCE the math. * * @param N receives optimized integers * @param C provides ideal coefficients * @param M is log₂ scaling factor, e.g. 7 * @param L is minimum input data size, e.g. 0 * @param H is maximum input data size, e.g. 255 * @return sum of errors for all inputs * @see en.wikipedia.org/wiki/Binary_scaling * @see o/tool/build/coefficients.com * @cost ~300ns */ long GetIntegerCoefficients(long N[static 6], const double C[static 6], long M, long L, long H) { int i; int j[6], J[6]; int O[6] = {0}; int S[3] = {0, -1, +1}; double R[6], K[6], D[6], HM, HL, least, error; least = 1; HM = 1L << M; HL = H - L + 1; assert(H >= L); assert(HL <= HM); for (i = 0; i < 6; ++i) { least *= HL; if (fabs(C[i]) > DBL_MIN) { J[i] = ARRAYLEN(S); R[i] = C[i] * HM; K[i] = rint(R[i]); N[i] = K[i]; } else { J[i] = 1; R[i] = 0; K[i] = 0; N[i] = 0; } } if (!NoDebug() && least > 1) { for (j[0] = 0; j[0] < J[0]; ++j[0]) { for (j[1] = 0; j[1] < J[1]; ++j[1]) { for (j[2] = 0; j[2] < J[2]; ++j[2]) { for (j[3] = 0; j[3] < J[3]; ++j[3]) { for (j[4] = 0; j[4] < J[4]; ++j[4]) { for (j[5] = 0; j[5] < J[5]; ++j[5]) { for (i = 0; i < ARRAYLEN(J); ++i) { D[i] = S[j[i]] + K[i] - R[i]; } if ((error = DifferSumSq(D, L, H) / HM) < least) { least = error; memcpy(O, j, sizeof(j)); } } } } } } } for (i = 0; i < 6; ++i) { N[i] += S[O[i]]; } } return lround(least); }