/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright 2020 Justine Alexandra Roberts Tunney │ │ │ │ This program is free software; you can redistribute it and/or modify │ │ it under the terms of the GNU General Public License as published by │ │ the Free Software Foundation; version 2 of the License. │ │ │ │ This program is distributed in the hope that it will be useful, but │ │ WITHOUT ANY WARRANTY; without even the implied warranty of │ │ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │ │ General Public License for more details. │ │ │ │ You should have received a copy of the GNU General Public License │ │ along with this program; if not, write to the Free Software │ │ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │ │ 02110-1301 USA │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/bits/hilbert.h" static axdx_t RotateQuadrant(long n, long y, long x, long ry, long rx) { long t; if (ry == 0) { if (rx == 1) { y = n - 1 - y; x = n - 1 - x; } t = x; x = y; y = t; } return (axdx_t){y, x}; } /** * Generates Hilbert space-filling curve. * * @see morton() */ long hilbert(long n, long y, long x) { axdx_t m; long d, s, ry, rx; d = 0; for (s = n / 2; s > 0; s /= 2) { rx = (x & s) > 0; ry = (y & s) > 0; d += s * s * ((3 * rx) ^ ry); m = RotateQuadrant(n, y, x, ry, rx); x = m.dx; y = m.ax; } return d; } /** * Decodes Hilbert space-filling curve. * * @see unmorton() */ axdx_t unhilbert(long n, long i) { axdx_t m; long s, t, y, x, ry, rx; t = i; x = y = 0; for (s = 1; s < n; s *= 2) { rx = (t / 2) & 1; ry = (t ^ rx) & 1; m = RotateQuadrant(s, y, x, ry, rx); x = m.dx + s * rx; y = m.ax + s * ry; t /= 4; } return (axdx_t){y, x}; }