/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */ /* * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #define _GNU_SOURCE #include "libc/math/libm.h" float jnf(int n, float x) { uint32_t ix; int nm1, sign, i; float a, b, temp; GET_FLOAT_WORD(ix, x); sign = ix>>31; ix &= 0x7fffffff; if (ix > 0x7f800000) /* nan */ return x; /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */ if (n == 0) return j0f(x); if (n < 0) { nm1 = -(n+1); x = -x; sign ^= 1; } else nm1 = n-1; if (nm1 == 0) return j1f(x); sign &= n; /* even n: 0, odd n: signbit(x) */ x = fabsf(x); if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */ b = 0.0f; else if (nm1 < x) { /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ a = j0f(x); b = j1f(x); for (i=0; i 8) /* underflow */ nm1 = 8; temp = 0.5f * x; b = temp; a = 1.0f; for (i=2; i<=nm1+1; i++) { a *= (float)i; /* a = n! */ b *= temp; /* b = (x/2)^n */ } b = b/a; } else { /* use backward recurrence */ /* x x^2 x^2 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... * 2n - 2(n+1) - 2(n+2) * * 1 1 1 * (for large x) = ---- ------ ------ ..... * 2n 2(n+1) 2(n+2) * -- - ------ - ------ - * x x x * * Let w = 2n/x and h=2/x, then the above quotient * is equal to the continued fraction: * 1 * = ----------------------- * 1 * w - ----------------- * 1 * w+h - --------- * w+2h - ... * * To determine how many terms needed, let * Q(0) = w, Q(1) = w(w+h) - 1, * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), * When Q(k) > 1e4 good for single * When Q(k) > 1e9 good for double * When Q(k) > 1e17 good for quadruple */ /* determine k */ float t,q0,q1,w,h,z,tmp,nf; int k; nf = nm1+1.0f; w = 2*nf/x; h = 2/x; z = w+h; q0 = w; q1 = w*z - 1.0f; k = 1; while (q1 < 1.0e4f) { k += 1; z += h; tmp = z*q1 - q0; q0 = q1; q1 = tmp; } for (t=0.0f, i=k; i>=0; i--) t = 1.0f/(2*(i+nf)/x-t); a = t; b = 1.0f; /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) * Hence, if n*(log(2n/x)) > ... * single 8.8722839355e+01 * double 7.09782712893383973096e+02 * long double 1.1356523406294143949491931077970765006170e+04 * then recurrent value may overflow and the result is * likely underflow to zero */ tmp = nf*logf(fabsf(w)); if (tmp < 88.721679688f) { for (i=nm1; i>0; i--) { temp = b; b = 2.0f*i*b/x - a; a = temp; } } else { for (i=nm1; i>0; i--){ temp = b; b = 2.0f*i*b/x - a; a = temp; /* scale b to avoid spurious overflow */ if (b > 0x1p60f) { a /= b; t /= b; b = 1.0f; } } } z = j0f(x); w = j1f(x); if (fabsf(z) >= fabsf(w)) b = t*z/b; else b = t*w/a; } } return sign ? -b : b; } float ynf(int n, float x) { uint32_t ix, ib; int nm1, sign, i; float a, b, temp; GET_FLOAT_WORD(ix, x); sign = ix>>31; ix &= 0x7fffffff; if (ix > 0x7f800000) /* nan */ return x; if (sign && ix != 0) /* x < 0 */ return 0/0.0f; if (ix == 0x7f800000) return 0.0f; if (n == 0) return y0f(x); if (n < 0) { nm1 = -(n+1); sign = n&1; } else { nm1 = n-1; sign = 0; } if (nm1 == 0) return sign ? -y1f(x) : y1f(x); a = y0f(x); b = y1f(x); /* quit if b is -inf */ GET_FLOAT_WORD(ib,b); for (i = 0; i < nm1 && ib != 0xff800000; ) { i++; temp = b; b = (2.0f*i/x)*b - a; GET_FLOAT_WORD(ib, b); a = temp; } return sign ? -b : b; }