/* clang-format off */ /* Apply various randomness tests to a stream of bytes by John Walker -- September 1996 http://www.fourmilab.ch/ */ #include "libc/math.h" #define FALSE 0 #define TRUE 1 #define log2of10 3.32192809488736234787 static int binary = FALSE; /* Treat input as a bitstream */ static long ccount[256], /* Bins to count occurrences of values */ totalc = 0; /* Total bytes counted */ static double prob[256]; /* Probabilities per bin for entropy */ /* RT_LOG2 -- Calculate log to the base 2 */ static double rt_log2(double x) { return log2of10 * log10(x); } #define MONTEN 6 /* Bytes used as Monte Carlo co-ordinates. This should be no more bits than the mantissa of your "double" floating point type. */ static int mp, sccfirst; static unsigned int monte[MONTEN]; static long inmont, mcount; static double cexp_, incirc, montex, montey, montepi, scc, sccun, sccu0, scclast, scct1, scct2, scct3, ent, chisq, datasum; /* RT_INIT -- Initialise random test counters. */ void rt_init(int binmode) { int i; binary = binmode; /* Set binary / byte mode */ /* Initialise for calculations */ ent = 0.0; /* Clear entropy accumulator */ chisq = 0.0; /* Clear Chi-Square */ datasum = 0.0; /* Clear sum of bytes for arithmetic mean */ mp = 0; /* Reset Monte Carlo accumulator pointer */ mcount = 0; /* Clear Monte Carlo tries */ inmont = 0; /* Clear Monte Carlo inside count */ incirc = 65535.0 * 65535.0;/* In-circle distance for Monte Carlo */ sccfirst = TRUE; /* Mark first time for serial correlation */ scct1 = scct2 = scct3 = 0.0; /* Clear serial correlation terms */ incirc = pow(pow(256.0, (double) (MONTEN / 2)) - 1, 2.0); for (i = 0; i < 256; i++) { ccount[i] = 0; } totalc = 0; } /* RT_ADD -- Add one or more bytes to accumulation. */ void rt_add(void *buf, int bufl) { unsigned char *bp = buf; int oc, c, bean; while (bean = 0, (bufl-- > 0)) { oc = *bp++; do { if (binary) { c = !!(oc & 0x80); } else { c = oc; } ccount[c]++; /* Update counter for this bin */ totalc++; /* Update inside / outside circle counts for Monte Carlo computation of PI */ if (bean == 0) { monte[mp++] = oc; /* Save character for Monte Carlo */ if (mp >= MONTEN) { /* Calculate every MONTEN character */ int mj; mp = 0; mcount++; montex = montey = 0; for (mj = 0; mj < MONTEN / 2; mj++) { montex = (montex * 256.0) + monte[mj]; montey = (montey * 256.0) + monte[(MONTEN / 2) + mj]; } if ((montex * montex + montey * montey) <= incirc) { inmont++; } } } /* Update calculation of serial correlation coefficient */ sccun = c; if (sccfirst) { sccfirst = FALSE; scclast = 0; sccu0 = sccun; } else { scct1 = scct1 + scclast * sccun; } scct2 = scct2 + sccun; scct3 = scct3 + (sccun * sccun); scclast = sccun; oc <<= 1; } while (binary && (++bean < 8)); } } /* RT_END -- Complete calculation and return results. */ void rt_end(double *r_ent, double *r_chisq, double *r_mean, double *r_montepicalc, double *r_scc) { int i; /* Complete calculation of serial correlation coefficient */ scct1 = scct1 + scclast * sccu0; scct2 = scct2 * scct2; scc = totalc * scct3 - scct2; if (scc == 0.0) { scc = -100000; } else { scc = (totalc * scct1 - scct2) / scc; } /* Scan bins and calculate probability for each bin and Chi-Square distribution. The probability will be reused in the entropy calculation below. While we're at it, we sum of all the data which will be used to compute the mean. */ cexp_ = totalc / (binary ? 2.0 : 256.0); /* Expected count per bin */ for (i = 0; i < (binary ? 2 : 256); i++) { double a = ccount[i] - cexp_; prob[i] = ((double) ccount[i]) / totalc; chisq += (a * a) / cexp_; datasum += ((double) i) * ccount[i]; } /* Calculate entropy */ for (i = 0; i < (binary ? 2 : 256); i++) { if (prob[i] > 0.0) { ent += prob[i] * rt_log2(1 / prob[i]); } } /* Calculate Monte Carlo value for PI from percentage of hits within the circle */ montepi = 4.0 * (((double) inmont) / mcount); /* Return results through arguments */ *r_ent = ent; *r_chisq = chisq; *r_mean = datasum / totalc; *r_montepicalc = montepi; *r_scc = scc; }