/* * Single-precision log2 function. * * Copyright (c) 2017-2018, Arm Limited. * SPDX-License-Identifier: MIT */ #include "libc/math/math.h" #include "libc/math/libm.h" #include "libc/math/log2f_data.h" /* LOG2F_TABLE_BITS = 4 LOG2F_POLY_ORDER = 4 ULP error: 0.752 (nearest rounding.) Relative error: 1.9 * 2^-26 (before rounding.) */ #define N (1 << LOG2F_TABLE_BITS) #define T __log2f_data.tab #define A __log2f_data.poly #define OFF 0x3f330000 float log2f(float x) { double_t z, r, r2, p, y, y0, invc, logc; uint32_t ix, iz, top, tmp; int k, i; ix = asuint(x); /* Fix sign of zero with downward rounding when x==1. */ if (WANT_ROUNDING && predict_false(ix == 0x3f800000)) return 0; if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) { /* x < 0x1p-126 or inf or nan. */ if (ix * 2 == 0) return __math_divzerof(1); if (ix == 0x7f800000) /* log2(inf) == inf. */ return x; if ((ix & 0x80000000) || ix * 2 >= 0xff000000) return __math_invalidf(x); /* x is subnormal, normalize it. */ ix = asuint(x * 0x1p23f); ix -= 23 << 23; } /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. The range is split into N subintervals. The ith subinterval contains z and c is near its center. */ tmp = ix - OFF; i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N; top = tmp & 0xff800000; iz = ix - top; k = (int32_t)tmp >> 23; /* arithmetic shift */ invc = T[i].invc; logc = T[i].logc; z = (double_t)asfloat(iz); /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */ r = z * invc - 1; y0 = logc + (double_t)k; /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */ r2 = r * r; y = A[1] * r + A[2]; y = A[0] * r2 + y; p = A[3] * r + y0; y = y * r2 + p; return eval_as_float(y); }