#ifndef COSMOPOLITAN_LIBC_BITS_H_ #define COSMOPOLITAN_LIBC_BITS_H_ #if !(__ASSEMBLER__ + __LINKER__ + 0) COSMOPOLITAN_C_START_ #define CheckUnsigned(x) ((x) / !((typeof(x))(-1) < 0)) /*───────────────────────────────────────────────────────────────────────────│─╗ │ cosmopolitan § bits ─╬─│┼ ╚────────────────────────────────────────────────────────────────────────────│*/ extern const bool kTrue; extern const bool kFalse; extern const uint8_t kReverseBits[256]; uint32_t gray(uint32_t) pureconst; uint32_t ungray(uint32_t) pureconst; unsigned bcdadd(unsigned, unsigned) pureconst; unsigned long bcd2i(unsigned long) pureconst; unsigned long i2bcd(unsigned long) pureconst; void bcxcpy(unsigned char (*)[16], unsigned long); int ffs(int) pureconst; int ffsl(long int) pureconst; int ffsll(long long int) pureconst; int fls(int) pureconst; int flsl(long int) pureconst; int flsll(long long int) pureconst; uint8_t bitreverse8(uint8_t) libcesque pureconst; uint16_t bitreverse16(uint16_t) libcesque pureconst; uint32_t bitreverse32(uint32_t) libcesque pureconst; uint64_t bitreverse64(uint64_t) libcesque pureconst; unsigned long roundup2pow(unsigned long) libcesque pureconst; unsigned long roundup2log(unsigned long) libcesque pureconst; unsigned long rounddown2pow(unsigned long) libcesque pureconst; unsigned long hamming(unsigned long, unsigned long) pureconst; /*───────────────────────────────────────────────────────────────────────────│─╗ │ cosmopolitan § bits » no assembly required ─╬─│┼ ╚────────────────────────────────────────────────────────────────────────────│*/ /** * Undocumented incantations for ROR, ROL, and SAR. */ #define ROR(w, k) (CheckUnsigned(w) >> (k) | (w) << (sizeof(w) * 8 - (k))) #define ROL(w, k) ((w) << (k) | CheckUnsigned(w) >> (sizeof(w) * 8 - (k))) #define SAR(w, k) (((w) & ~(~0u >> (k))) | ((w) >> ((k) & (sizeof(w) * 8 - 1)))) #define bitreverse8(X) (kReverseBits[(X)&0xff]) #define bitreverse16(X) \ ((uint16_t)kReverseBits[(X)&0xff] << 010 | \ kReverseBits[((uint16_t)(X) >> 010) & 0xff]) #define READ16LE(S) \ ((uint16_t)((unsigned char *)(S))[1] << 010 | \ (uint16_t)((unsigned char *)(S))[0] << 000) #define READ32LE(S) \ ((uint32_t)((unsigned char *)(S))[3] << 030 | \ (uint32_t)((unsigned char *)(S))[2] << 020 | \ (uint32_t)((unsigned char *)(S))[1] << 010 | \ (uint32_t)((unsigned char *)(S))[0] << 000) #define READ64LE(S) \ ((uint64_t)((unsigned char *)(S))[7] << 070 | \ (uint64_t)((unsigned char *)(S))[6] << 060 | \ (uint64_t)((unsigned char *)(S))[5] << 050 | \ (uint64_t)((unsigned char *)(S))[4] << 040 | \ (uint64_t)((unsigned char *)(S))[3] << 030 | \ (uint64_t)((unsigned char *)(S))[2] << 020 | \ (uint64_t)((unsigned char *)(S))[1] << 010 | \ (uint64_t)((unsigned char *)(S))[0] << 000) #define READ16BE(S) \ ((uint16_t)((unsigned char *)(S))[0] << 010 | \ (uint16_t)((unsigned char *)(S))[1] << 000) #define READ32BE(S) \ ((uint32_t)((unsigned char *)(S))[0] << 030 | \ (uint32_t)((unsigned char *)(S))[1] << 020 | \ (uint32_t)((unsigned char *)(S))[2] << 010 | \ (uint32_t)((unsigned char *)(S))[3] << 000) #define READ64BE(S) \ ((uint64_t)((unsigned char *)(S))[0] << 070 | \ (uint64_t)((unsigned char *)(S))[1] << 060 | \ (uint64_t)((unsigned char *)(S))[2] << 050 | \ (uint64_t)((unsigned char *)(S))[3] << 040 | \ (uint64_t)((unsigned char *)(S))[4] << 030 | \ (uint64_t)((unsigned char *)(S))[5] << 020 | \ (uint64_t)((unsigned char *)(S))[6] << 010 | \ (uint64_t)((unsigned char *)(S))[7] << 000) #define read16le(S) \ ({ \ unsigned char *Str = (unsigned char *)(S); \ READ16LE(Str); \ }) #define read32le(S) \ ({ \ unsigned char *Str = (unsigned char *)(S); \ READ32LE(Str); \ }) #define read64le(S) \ ({ \ unsigned char *Str = (unsigned char *)(S); \ READ64LE(Str); \ }) #define read16be(S) \ ({ \ unsigned char *Str = (unsigned char *)(S); \ READ16BE(Str); \ }) #define read32be(S) \ ({ \ unsigned char *Str = (unsigned char *)(S); \ READ32BE(Str); \ }) #define read64be(S) \ ({ \ unsigned char *Str = (unsigned char *)(S); \ READ64BE(Str); \ }) #define WRITE16LE(P, V) \ do { \ uint8_t *Ple = (uint8_t *)(P); \ uint16_t Vle = (V); \ Ple[0] = (uint8_t)(Vle >> 000); \ Ple[1] = (uint8_t)(Vle >> 010); \ } while (0) #define WRITE32LE(P, V) \ do { \ uint8_t *Ple = (uint8_t *)(P); \ uint32_t Vle = (V); \ Ple[0] = (uint8_t)(Vle >> 000); \ Ple[1] = (uint8_t)(Vle >> 010); \ Ple[2] = (uint8_t)(Vle >> 020); \ Ple[3] = (uint8_t)(Vle >> 030); \ } while (0) #define WRITE64LE(P, V) \ do { \ uint8_t *Ple = (uint8_t *)(P); \ uint64_t Vle = (V); \ Ple[0] = (uint8_t)(Vle >> 000); \ Ple[1] = (uint8_t)(Vle >> 010); \ Ple[2] = (uint8_t)(Vle >> 020); \ Ple[3] = (uint8_t)(Vle >> 030); \ Ple[4] = (uint8_t)(Vle >> 040); \ Ple[5] = (uint8_t)(Vle >> 050); \ Ple[6] = (uint8_t)(Vle >> 060); \ Ple[7] = (uint8_t)(Vle >> 070); \ } while (0) /*───────────────────────────────────────────────────────────────────────────│─╗ │ cosmopolitan § bits » some assembly required ─╬─│┼ ╚────────────────────────────────────────────────────────────────────────────│*/ /** * Constraints for virtual machine flags. * @note we beseech clang devs for flag constraints */ #ifdef __GCC_ASM_FLAG_OUTPUTS__ /* GCC6+ CLANG10+ */ #define CFLAG_CONSTRAINT "=@ccc" #define CFLAG_ASM(OP) OP #define ZFLAG_CONSTRAINT "=@ccz" #define ZFLAG_ASM(OP) OP #define OFLAG_CONSTRAINT "=@cco" #define OFLAG_ASM(OP) OP #define SFLAG_CONSTRAINT "=@ccs" #define SFLAG_ASM(SP) SP #define ABOVE_CONSTRAINT "=@cca" /* i.e. !ZF && !CF */ #define ABOVEFLAG_ASM(OP) OP #else #define CFLAG_CONSTRAINT "=q" #define CFLAG_ASM(OP) OP "\n\tsetc\t%b0" #define ZFLAG_CONSTRAINT "=q" #define ZFLAG_ASM(OP) OP "\n\tsetz\t%b0" #define OFLAG_CONSTRAINT "=q" #define OFLAG_ASM(OP) OP "\n\tseto\t%b0" #define SFLAG_CONSTRAINT "=q" #define SFLAG_ASM(SP) OP "\n\tsets\t%b0" #define ABOVE_CONSTRAINT "=@cca" #define ABOVEFLAG_ASM(OP) OP "\n\tseta\t%b0" #endif /** * Reads scalar from memory w/ one operation. * * @param MEM is alignas(𝑘) uint𝑘_t[hasatleast 1] where 𝑘 ∈ {8,16,32,64} * @return *(MEM) * @note defeats compiler load tearing optimizations * @note alignas(𝑘) is implied if compiler knows type * @note alignas(𝑘) only avoids multi-core / cross-page edge cases * @see Intel's Six-Thousand Page Manual V.3A §8.2.3.1 * @see atomic_store() */ #define atomic_load(MEM) \ ({ \ autotype(MEM) Mem = (MEM); \ typeof(*Mem) Reg; \ asm("mov\t%1,%0" : "=r"(Reg) : "m"(*Mem)); \ Reg; \ }) /** * Saves scalar to memory w/ one operation. * * This is guaranteed to happen in either one or zero operations, * depending on whether or not it's possible for *(MEM) to be read * afterwards. This macro only forbids compiler from using >1 ops. * * @param MEM is alignas(𝑘) uint𝑘_t[hasatleast 1] where 𝑘 ∈ {8,16,32,64} * @param VAL is uint𝑘_t w/ better encoding for immediates (constexpr) * @return VAL * @note alignas(𝑘) on nexgen32e only needed for end of page gotcha * @note alignas(𝑘) is implied if compiler knows type * @note needed to defeat store tearing optimizations * @see Intel Six-Thousand Page Manual Manual V.3A §8.2.3.1 * @see atomic_load() */ #define atomic_store(MEM, VAL) \ ({ \ autotype(VAL) Val = (VAL); \ typeof(&Val) Mem = (MEM); \ asm("mov%z1\t%1,%0" : "=m,m"(*Mem) : "i,r"(Val)); \ Val; \ }) /** * Returns true if bit is set in memory. * * This is a generically-typed Bitset ∀ RAM. This macro is intended * to be container-like with optimal machine instruction encoding, cf. * machine-agnostic container abstractions. Memory accesses are words. * Register allocation can be avoided if BIT is known. Be careful when * casting character arrays since that should cause a page fault. * * @param MEM is uint𝑘_t[] where 𝑘 ∈ {16,32,64} base address * @param BIT ∈ [-(2**(𝑘-1)),2**(𝑘-1)) is zero-based index * @return true if bit is set, otherwise false * @see Intel's Six Thousand Page Manual V.2A 3-113 * @see bts(), btr(), btc() */ #define bt(MEM, BIT) \ ({ \ bool OldBit; \ if (isconstant(BIT)) { \ asm(CFLAG_ASM("bt%z1\t%2,%1") \ : CFLAG_CONSTRAINT(OldBit) \ : "m"((MEM)[(BIT) / (sizeof((MEM)[0]) * CHAR_BIT)]), \ "J"((BIT) % (sizeof((MEM)[0]) * CHAR_BIT)) \ : "cc"); \ } else if (sizeof((MEM)[0]) == 2) { \ asm(CFLAG_ASM("bt\t%w2,%1") \ : CFLAG_CONSTRAINT(OldBit) \ : "m"((MEM)[0]), "r"(BIT) \ : "cc"); \ } else if (sizeof((MEM)[0]) == 4) { \ asm(CFLAG_ASM("bt\t%k2,%1") \ : CFLAG_CONSTRAINT(OldBit) \ : "m"((MEM)[0]), "r"(BIT) \ : "cc"); \ } else if (sizeof((MEM)[0]) == 8) { \ asm(CFLAG_ASM("bt\t%q2,%1") \ : CFLAG_CONSTRAINT(OldBit) \ : "m"((MEM)[0]), "r"(BIT) \ : "cc"); \ } \ OldBit; \ }) #define bts(MEM, BIT) __BitOp("bts", BIT, MEM) /** bit test and set */ #define btr(MEM, BIT) __BitOp("btr", BIT, MEM) /** bit test and reset */ #define btc(MEM, BIT) __BitOp("btc", BIT, MEM) /** bit test and complement */ #define lockbts(MEM, BIT) __BitOp("lock bts", BIT, MEM) #define lockbtr(MEM, BIT) __BitOp("lock btr", BIT, MEM) #define lockbtc(MEM, BIT) __BitOp("lock btc", BIT, MEM) #define lockinc(MEM) __ArithmeticOp1("lock inc", MEM) #define lockdec(MEM) __ArithmeticOp1("lock dec", MEM) #define locknot(MEM) __ArithmeticOp1("lock not", MEM) #define lockneg(MEM) __ArithmeticOp1("lock neg", MEM) #define lockaddeq(MEM, VAL) __ArithmeticOp2("lock add", VAL, MEM) #define locksubeq(MEM, VAL) __ArithmeticOp2("lock sub", VAL, MEM) #define lockxoreq(MEM, VAL) __ArithmeticOp2("lock xor", VAL, MEM) #define lockandeq(MEM, VAL) __ArithmeticOp2("lock and", VAL, MEM) #define lockoreq(MEM, VAL) __ArithmeticOp2("lock or", VAL, MEM) /** * Exchanges *MEMORY into *LOCALVAR w/ one operation. * * @param MEMORY is uint𝑘_t[hasatleast 1] where 𝑘 ∈ {8,16,32,64} * @param LOCALVAR is uint𝑘_t[hasatleast 1] * @return LOCALVAR[0] * @see xchg() */ #define lockxchg(MEMORY, LOCALVAR) \ ({ \ static_assert(typescompatible(typeof(*(MEMORY)), typeof(*(LOCALVAR)))); \ asm("xchg\t%0,%1" : "+%m"(*(MEMORY)), "+r"(*(LOCALVAR))); \ *(LOCALVAR); \ }) /** * Compares and exchanges. * * @param IFTHING is uint𝑘_t[hasatleast 1] where 𝑘 ∈ {8,16,32,64} * @return true if value was exchanged, otherwise false * @see lockcmpxchg() */ #define cmpxchg(IFTHING, ISEQUALTOME, REPLACEITWITHME) \ ({ \ bool DidIt; \ asm(ZFLAG_ASM("cmpxchg\t%3,%1") \ : ZFLAG_CONSTRAINT(DidIt), "+m"(*(IFTHING)), "+a"(*(ISEQUALTOME)) \ : "r"((typeof(*(IFTHING)))(REPLACEITWITHME)) \ : "cc"); \ DidIt; \ }) #define ezcmpxchg(IFTHING, ISEQUALTOME, REPLACEITWITHME) \ ({ \ bool DidIt; \ autotype(IFTHING) IfThing = (IFTHING); \ typeof(*IfThing) IsEqualToMe = (ISEQUALTOME); \ typeof(*IfThing) ReplaceItWithMe = (REPLACEITWITHME); \ asm(ZFLAG_ASM("cmpxchg\t%3,%1") \ : ZFLAG_CONSTRAINT(DidIt), "+m"(*IfThing), "+a"(IsEqualToMe) \ : "r"(ReplaceItWithMe) \ : "cc"); \ DidIt; \ }) /** * Compares and exchanges w/ one operation. * * @param IFTHING is uint𝑘_t[hasatleast 1] where 𝑘 ∈ {8,16,32,64} * @return true if value was exchanged, otherwise false * @see lockcmpxchg() */ #define lockcmpxchg(IFTHING, ISEQUALTOME, REPLACEITWITHME) \ ({ \ bool DidIt; \ asm(ZFLAG_ASM("lock cmpxchg\t%3,%1") \ : ZFLAG_CONSTRAINT(DidIt), "+m"(*(IFTHING)), "+a"(*(ISEQUALTOME)) \ : "r"((typeof(*(IFTHING)))(REPLACEITWITHME)) \ : "cc"); \ DidIt; \ }) /** * Gets value of extended control register. */ #define xgetbv(xcr_register_num) \ ({ \ unsigned hi, lo; \ asm("xgetbv" : "=d"(hi), "=a"(lo) : "c"(cr_register_num)); \ (uint64_t) hi << 32 | lo; \ }) /** * Reads model-specific register. * @note programs running as guests won't have authorization */ #define rdmsr(msr) \ ({ \ uint32_t lo, hi; \ asm volatile("rdmsr" : "=a"(lo), "=d"(hi) : "c"(msr)); \ (uint64_t) hi << 32 | lo; \ }) /** * Writes model-specific register. * @note programs running as guests won't have authorization */ #define wrmsr(msr, val) \ do { \ uint64_t val_ = (val); \ asm volatile("wrmsr" \ : /* no outputs */ \ : "c"(msr), "a"((uint32_t)val_), \ "d"((uint32_t)(val_ >> 32))); \ } while (0) /** * Tells CPU page tables changed for virtual address. * @note programs running as guests won't have authorization */ #define invlpg(MEM) \ asm volatile("invlpg\t(%0)" : /* no outputs */ : "r"(MEM) : "memory") #define IsAddressCanonicalForm(P) \ ({ \ intptr_t p2 = (intptr_t)(P); \ (0xffff800000000000l <= p2 && p2 <= 0x00007fffffffffffl); \ }) /*───────────────────────────────────────────────────────────────────────────│─╗ │ cosmopolitan § bits » implementation details ─╬─│┼ ╚────────────────────────────────────────────────────────────────────────────│*/ #define __ArithmeticOp1(OP, MEM) \ ({ \ asm(OP "%z0\t%0" : "+m"(*(MEM)) : /* no inputs */ : "cc"); \ MEM; \ }) #define __ArithmeticOp2(OP, VAL, MEM) \ ({ \ asm(OP "%z0\t%1,%0" : "+m,m"(*(MEM)) : "i,r"(VAL) : "cc"); \ MEM; \ }) #define __BitOp(OP, BIT, MEM) \ ({ \ bool OldBit; \ if (isconstant(BIT)) { \ asm(CFLAG_ASM(OP "%z1\t%2,%1") \ : CFLAG_CONSTRAINT(OldBit), \ "+m"((MEM)[(BIT) / (sizeof((MEM)[0]) * CHAR_BIT)]) \ : "J"((BIT) % (sizeof((MEM)[0]) * CHAR_BIT)) \ : "cc"); \ } else if (sizeof((MEM)[0]) == 2) { \ asm(CFLAG_ASM(OP "\t%w2,%1") \ : CFLAG_CONSTRAINT(OldBit), "+m"((MEM)[0]) \ : "r"(BIT) \ : "cc"); \ } else if (sizeof((MEM)[0]) == 4) { \ asm(CFLAG_ASM(OP "\t%k2,%1") \ : CFLAG_CONSTRAINT(OldBit), "+m"((MEM)[0]) \ : "r"(BIT) \ : "cc"); \ } else if (sizeof((MEM)[0]) == 8) { \ asm(CFLAG_ASM(OP "\t%q2,%1") \ : CFLAG_CONSTRAINT(OldBit), "+m"((MEM)[0]) \ : "r"(BIT) \ : "cc"); \ } \ OldBit; \ }) COSMOPOLITAN_C_END_ #endif /* !(__ASSEMBLER__ + __LINKER__ + 0) */ #endif /* COSMOPOLITAN_LIBC_BITS_H_ */