/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright 1995-2017 Jean-loup Gailly │ │ Use of this source code is governed by the BSD-style licenses that can │ │ be found in the third_party/zlib/LICENSE file. │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/stdio/stdio.h" #include "libc/str/str.h" #include "third_party/zlib/deflate.h" #include "third_party/zlib/internal.h" asm(".ident\t\"\\n\\n\ zlib (zlib License)\\n\ Copyright 1995-2017 Jean-loup Gailly and Mark Adler\""); asm(".include \"libc/disclaimer.inc\""); /** * @fileoverview output deflated data using Huffman coding * * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself a * Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as * described in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* Bit length codes must not exceed MAX_BL_BITS bits */ #define MAX_BL_BITS 7 /* end of block literal code */ #define END_BLOCK 256 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REP_3_6 16 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 11-138 times (7 bits of repeat count) */ #define REPZ_11_138 18 static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0}; static const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; static const int extra_blbits[BL_CODES] /* extra bits for each bit length code */ = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7}; static const uint8_t bl_order[BL_CODES] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /** * Local data. These are initialized only once. */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; static const static_tree_desc static_l_desc = {kZlibStaticLtree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS}; static const static_tree_desc static_d_desc = {kZlibStaticDtree, extra_dbits, 0, D_CODES, MAX_BITS}; static const static_tree_desc static_bl_desc = { (const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /** * Local (static) routines in this file. */ static void tr_static_init(void); static void init_block(struct DeflateState *s); static void pqdownheap(struct DeflateState *s, ct_data *tree, int k); static void gen_bitlen(struct DeflateState *s, tree_desc *desc); static void gen_codes(ct_data *tree, int max_code, uint16_t *bl_count); static void build_tree(struct DeflateState *s, tree_desc *desc); static void scan_tree(struct DeflateState *s, ct_data *tree, int max_code); static void send_tree(struct DeflateState *s, ct_data *tree, int max_code); static int build_bl_tree(struct DeflateState *s); static void send_all_trees(struct DeflateState *s, int lcodes, int dcodes, int blcodes); static void compress_block(struct DeflateState *s, const ct_data *ltree, const ct_data *dtree); static int detect_data_type(struct DeflateState *s); static unsigned bi_reverse(unsigned value, int length); static void bi_windup(struct DeflateState *s); static void bi_flush(struct DeflateState *s); #ifdef GEN_TREES_H static void gen_trees_header(void); #endif #ifndef ZLIB_DEBUG #define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* !ZLIB_DEBUG */ #define send_code(s, c, tree) \ { \ if (z_verbose > 2) fprintf(stderr, "\ncd %3d ", (c)); \ send_bits(s, tree[c].Code, tree[c].Len); \ } #endif /** * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) \ { \ put_byte(s, (uint8_t)((w)&0xff)); \ put_byte(s, (uint8_t)((uint16_t)(w) >> 8)); \ } /** * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef ZLIB_DEBUG static void send_bits(struct DeflateState *s, int value, int length) { Tracevv((stderr, " l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (uint64_t)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (uint16_t)value << s->bi_valid; put_short(s, s->bi_buf); s->bi_buf = (uint16_t)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= (uint16_t)value << s->bi_valid; s->bi_valid += length; } } #else /* !ZLIB_DEBUG */ #define send_bits(s, value, length) \ { \ int len = length; \ if (s->bi_valid > (int)Buf_size - len) { \ int val = (int)value; \ s->bi_buf |= (uint16_t)val << s->bi_valid; \ put_short(s, s->bi_buf); \ s->bi_buf = (uint16_t)val >> (Buf_size - s->bi_valid); \ s->bi_valid += len - Buf_size; \ } else { \ s->bi_buf |= (uint16_t)(value) << s->bi_valid; \ s->bi_valid += len; \ } \ } #endif /* ZLIB_DEBUG */ /* the arguments must not have side effects */ /** * Initialize the various 'constant' tables. */ static void tr_static_init(void) { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ uint16_t bl_count[MAX_BITS + 1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ #ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = kZlibStaticLtree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = kZlibStaticDtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; #endif /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES - 1; code++) { kZlibBaseLength[code] = length; for (n = 0; n < (1u << extra_lbits[code]); n++) { kZlibLengthCode[length++] = (uint8_t)code; } } Assert(length == 256, "tr_static_init: length != 256"); /* Note that the length 255 (match length 258) can be represented * in two different ways: code 284 + 5 bits or code 285, so we * overwrite length_code[255] to use the best encoding: */ kZlibLengthCode[length - 1] = (uint8_t)code; /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ dist = 0; for (code = 0; code < 16; code++) { kZlibBaseDist[code] = dist; for (n = 0; n < (1u << extra_dbits[code]); n++) { kZlibDistCode[dist++] = (uint8_t)code; } } Assert(dist == 256, "tr_static_init: dist != 256"); dist >>= 7; /* from now on, all distances are divided by 128 */ for (; code < D_CODES; code++) { kZlibBaseDist[code] = dist << 7; for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { kZlibDistCode[256 + dist++] = (uint8_t)code; } } Assert(dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) kZlibStaticLtree[n++].Len = 8, bl_count[8]++; while (n <= 255) kZlibStaticLtree[n++].Len = 9, bl_count[9]++; while (n <= 279) kZlibStaticLtree[n++].Len = 7, bl_count[7]++; while (n <= 287) kZlibStaticLtree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)kZlibStaticLtree, L_CODES + 1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { kZlibStaticDtree[n].Len = 5; kZlibStaticDtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; #ifdef GEN_TREES_H gen_trees_header(); #endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /** * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H #define SEPARATOR(i, last, width) \ ((i) == (last) ? "\n};\n\n" : ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header(void) { FILE *header = fopen("trees.h", "w"); int i; Assert(header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data kZlibStaticLtree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES + 2; i++) { fprintf(header, "{{%3u},{%3u}}%s", kZlibStaticLtree[i].Code, kZlibStaticLtree[i].Len, SEPARATOR(i, L_CODES + 1, 5)); } fprintf(header, "local const ct_data kZlibStaticDtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", kZlibStaticDtree[i].Code, kZlibStaticDtree[i].Len, SEPARATOR(i, D_CODES - 1, 5)); } fprintf(header, "const uint8_t kZlibDistCode[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", kZlibDistCode[i], SEPARATOR(i, DIST_CODE_LEN - 1, 20)); } fprintf(header, "const uint8_t kZlibLengthCode[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH - MIN_MATCH + 1; i++) { fprintf(header, "%2u%s", kZlibLengthCode[i], SEPARATOR(i, MAX_MATCH - MIN_MATCH, 20)); } fprintf(header, "local const int kZlibBaseLength[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", kZlibBaseLength[i], SEPARATOR(i, LENGTH_CODES - 1, 20)); } fprintf(header, "local const int kZlibBaseDist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", kZlibBaseDist[i], SEPARATOR(i, D_CODES - 1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /** * Initialize the tree data structures for a new zlib stream. */ void _tr_init(struct DeflateState *s) { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; #ifdef ZLIB_DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /** * Initialize a new block. */ static void init_block(struct DeflateState *s) { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->sym_next = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /** * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ { \ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /** * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /** * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). * @param tree is tree to restore * @param k is node to move down */ static void pqdownheap(struct DeflateState *s, ct_data *tree, int k) { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /** * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ static void gen_bitlen(struct DeflateState *s, tree_desc *desc) { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ uint16_t f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (uint16_t)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n - base]; f = tree[n].Freq; s->opt_len += (uint64_t)f * (unsigned)(bits + xbits); if (stree) s->static_len += (uint64_t)f * (unsigned)(stree[n].Len + xbits); } if (overflow == 0) return; Tracev((stderr, "\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length - 1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned)tree[m].Len != (unsigned)bits) { Tracev((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((uint64_t)bits - tree[m].Len) * tree[m].Freq; tree[m].Len = (uint16_t)bits; } n--; } } } /** * Generates codes for given tree and bit counts (need not be optimal). * * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. * * @param max_code is largest code with non zero frequency * @param bl_count is number of codes at each bit length */ static void gen_codes(ct_data *tree, int max_code, uint16_t *bl_count) { uint16_t next_code[MAX_BITS + 1]; /* next code value for each bit length */ unsigned code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { code = (code + bl_count[bits - 1]) << 1; next_code[bits] = (uint16_t)code; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert(code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1, "inconsistent bit counts"); Tracev((stderr, "\ngen_codes: max_code %d ", max_code)); for (n = 0; n <= max_code; n++) { int len = tree[n].Len; if (len == 0) continue; /* Now reverse the bits */ tree[n].Code = (uint16_t)bi_reverse(next_code[len]++, len); Tracecv(tree != kZlibStaticLtree, (stderr, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1)); } } /** * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length * and corresponding code. The length opt_len is updated; static_len is * also updated if stree is not null. The field max_code is set. */ static void build_tree(struct DeflateState *s, tree_desc *desc) { ct_data *tree = desc->dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len / 2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uint8_t)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (uint16_t)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes((ct_data *)tree, max_code, s->bl_count); } /** * Scan a literal or distance tree to determine the frequencies of the * codes in the bit length tree. * * @param tree is tree to be scanned * @param max_code is its largest code of non zero frequency */ static void scan_tree(struct DeflateState *s, ct_data *tree, int max_code) { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code + 1].Len = (uint16_t)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n + 1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /** * Send a literal or distance tree in compressed form, using the codes in * bl_tree. * * @param tree is tree to be scanned * @param max_code is its largest code of non zero frequency */ static void send_tree(struct DeflateState *s, ct_data *tree, int max_code) { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n + 1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /** * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ static int build_bl_tree(struct DeflateState *s) { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3 * ((uint64_t)max_blindex + 1) + 5 + 5 + 4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /** * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ static void send_all_trees(struct DeflateState *s, int lcodes, int dcodes, int blcodes) { int rank; /* index in bl_order */ Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes - 1, 5); send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /** * Sends stored block. * @param last is one if this is the last block of file */ void _tr_stored_block(struct DeflateState *s, charf *buf, uint64_t stored_len, int last) { send_bits(s, (STORED_BLOCK << 1) + last, 3); /* send block type */ bi_windup(s); /* align on byte boundary */ put_short(s, (uint16_t)stored_len); put_short(s, (uint16_t)~stored_len); memcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); s->pending += stored_len; #ifdef ZLIB_DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (uint64_t)~7L; s->compressed_len += (stored_len + 4) << 3; s->bits_sent += 2 * 16; s->bits_sent += stored_len << 3; #endif } /** * Flushes bits in bit buffer to pending output (leaves at most 7 bits) */ void _tr_flush_bits(struct DeflateState *s) { bi_flush(s); } /** * Sends one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ void _tr_align(struct DeflateState *s) { send_bits(s, STATIC_TREES << 1, 3); send_code(s, END_BLOCK, kZlibStaticLtree); #ifdef ZLIB_DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); } /** * Determine the best encoding for the current block: dynamic trees, * static trees or store, and write out the encoded block. * * @param last is one if this is the last block of file */ void _tr_flush_block(struct DeflateState *s, charf *buf, uint64_t stored_len, int last) { uint64_t opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (s->strm->data_type == Z_UNKNOWN) s->strm->data_type = detect_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev( (stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev( (stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len + 3 + 7) >> 3; static_lenb = (s->static_len + 3 + 7) >> 3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->sym_next / 3)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char *)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char *)0) { /* force stored block */ #else if (stored_len + 4 <= opt_lenb && buf != (char *)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES << 1) + last, 3); compress_block(s, (const ct_data *)kZlibStaticLtree, (const ct_data *)kZlibStaticDtree); #ifdef ZLIB_DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES << 1) + last, 3); send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1, max_blindex + 1); compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); #ifdef ZLIB_DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert(s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); #ifdef ZLIB_DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len >> 3, s->compressed_len - 7 * last)); } /** * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. * * @param dist is distance of matched string * @param lc is match length-MIN_MATCH or unmatched char (if dist==0) */ int _tr_tally(struct DeflateState *s, unsigned dist, unsigned lc) { s->sym_buf[s->sym_next++] = dist; s->sym_buf[s->sym_next++] = dist >> 8; s->sym_buf[s->sym_next++] = lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((uint16_t)dist < (uint16_t)MAX_DIST(s) && (uint16_t)lc <= (uint16_t)(MAX_MATCH - MIN_MATCH) && (uint16_t)d_code(dist) < (uint16_t)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[kZlibLengthCode[lc] + LITERALS + 1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } return (s->sym_next == s->sym_end); } /** * Send the block data compressed using the given Huffman trees */ static void compress_block(struct DeflateState *s, const ct_data *ltree, const ct_data *dtree) { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned sx = 0; /* running index in sym_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->sym_next != 0) do { dist = s->sym_buf[sx++] & 0xff; dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; lc = s->sym_buf[sx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr, " '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = kZlibLengthCode[lc]; send_code(s, code + LITERALS + 1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= kZlibBaseLength[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert(code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= (unsigned)kZlibBaseDist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and sym_buf is ok: */ Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow"); } while (sx < s->sym_next); send_code(s, END_BLOCK, ltree); } /** * Checks if data type is TEXT or BINARY. * * This uses the following algorithm: * * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * * IN assertion: the fields Freq of dyn_ltree are set. */ static int detect_data_type(struct DeflateState *s) { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ unsigned long black_mask = 0xf3ffc07fUL; int n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>= 1) if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) return Z_BINARY; /* Check for textual ("white-listed") bytes. */ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) return Z_TEXT; for (n = 32; n < LITERALS; n++) if (s->dyn_ltree[n].Freq != 0) return Z_TEXT; /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } /** * Reverse the first len bits of a code, using straightforward code (a * faster method would use a table). * * IN assertion: 1 <= len <= 15 * * @param code is value to invert * @param len is in bits */ static unsigned bi_reverse(unsigned code, int len) { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /** * Flushes bit buffer, keeping at most 7 bits in it. */ static void bi_flush(struct DeflateState *s) { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /** * Flushes bit buffer and align the output on a byte boundary */ static void bi_windup(struct DeflateState *s) { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef ZLIB_DEBUG s->bits_sent = (s->bits_sent + 7) & ~7; #endif }