#ifndef DOUBLE_CONVERSION_UTILS_H_ #define DOUBLE_CONVERSION_UTILS_H_ #include "libc/assert.h" #include "libc/mem/mem.h" #include "libc/runtime/runtime.h" #include "libc/str/str.h" #ifndef DOUBLE_CONVERSION_ASSERT #define DOUBLE_CONVERSION_ASSERT(condition) assert(condition); #endif #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED #define DOUBLE_CONVERSION_UNIMPLEMENTED() (abort()) #endif #ifndef DOUBLE_CONVERSION_NO_RETURN #ifdef _MSC_VER #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn) #else #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn)) #endif #endif #ifndef DOUBLE_CONVERSION_UNREACHABLE #ifdef _MSC_VER void DOUBLE_CONVERSION_NO_RETURN abort_noreturn(); inline void abort_noreturn() { abort(); } #define DOUBLE_CONVERSION_UNREACHABLE() (abort_noreturn()) #else #define DOUBLE_CONVERSION_UNREACHABLE() (abort()) #endif #endif #ifndef DOUBLE_CONVERSION_UNUSED #ifdef __GNUC__ #define DOUBLE_CONVERSION_UNUSED __attribute__((unused)) #else #define DOUBLE_CONVERSION_UNUSED #endif #endif // Double operations detection based on target architecture. // Linux uses a 80bit wide floating point stack on x86. This induces double // rounding, which in turn leads to wrong results. // An easy way to test if the floating-point operations are correct is to // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then // the result is equal to 89255e-22. // The best way to test this, is to create a division-function and to compare // the output of the division with the expected result. (Inlining must be // disabled.) // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) // // For example: /* // -- in div.c double Div_double(double x, double y) { return x / y; } // -- in main.c double Div_double(double x, double y); // Forward declaration. int main(int argc, char** argv) { return Div_double(89255.0, 1e22) == 89255e-22; } */ // Run as follows ./main || echo "correct" // // If it prints "correct" then the architecture should be here, in the "correct" // section. #if defined(_M_X64) || defined(__x86_64__) || defined(__ARMEL__) || \ defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \ defined(__hppa__) || defined(__ia64__) || defined(__mips__) || \ defined(__nios2__) || defined(__powerpc__) || defined(__ppc__) || \ defined(__ppc64__) || defined(_POWER) || defined(_ARCH_PPC) || \ defined(_ARCH_PPC64) || defined(__sparc__) || defined(__sparc) || \ defined(__s390__) || defined(__SH4__) || defined(__alpha__) || \ defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) || \ defined(__AARCH64EL__) || defined(__aarch64__) || \ defined(__AARCH64EB__) || defined(__riscv) || defined(__e2k__) || \ defined(__or1k__) || defined(__arc__) || defined(__microblaze__) || \ defined(__XTENSA__) || defined(__EMSCRIPTEN__) || defined(__wasm32__) #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 #elif defined(__mc68000__) || defined(__pnacl__) || defined(__native_client__) #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS #elif defined(_M_IX86) || defined(__i386__) || defined(__i386) #if defined(_WIN32) // Windows uses a 64bit wide floating point stack. #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 #else #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS #endif // _WIN32 #else #error Target architecture was not detected as supported by Double-Conversion. #endif typedef uint16_t uc16; // The following macro works on both 32 and 64-bit platforms. // Usage: instead of writing 0x1234567890123456 // write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456); #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) \ (((static_cast(a) << 32) + 0x##b##u)) // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of // type size_t which represents the number of elements of the given array. You // should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated arrays. #ifndef DOUBLE_CONVERSION_ARRAY_SIZE #define DOUBLE_CONVERSION_ARRAY_SIZE(a) \ ((sizeof(a) / sizeof(*(a))) / \ static_cast(!(sizeof(a) % sizeof(*(a))))) #endif // A macro to disallow the evil copy constructor and operator= functions // This should be used in the private: declarations for a class #ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN #define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&); \ void operator=(const TypeName&) #endif // A macro to disallow all the implicit constructors, namely the // default constructor, copy constructor and operator= functions. // // This should be used in the private: declarations for a class // that wants to prevent anyone from instantiating it. This is // especially useful for classes containing only static methods. #ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS #define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ TypeName(); \ DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName) #endif namespace double_conversion { inline int StrLength(const char* string) { size_t length = strlen(string); DOUBLE_CONVERSION_ASSERT(length == static_cast(static_cast(length))); return static_cast(length); } // This is a simplified version of V8's Vector class. template class Vector { public: Vector() : start_(NULL), length_(0) {} Vector(T* data, int len) : start_(data), length_(len) { DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != NULL)); } // Returns a vector using the same backing storage as this one, // spanning from and including 'from', to but not including 'to'. Vector SubVector(int from, int to) { DOUBLE_CONVERSION_ASSERT(to <= length_); DOUBLE_CONVERSION_ASSERT(from < to); DOUBLE_CONVERSION_ASSERT(0 <= from); return Vector(start() + from, to - from); } // Returns the length of the vector. int length() const { return length_; } // Returns whether or not the vector is empty. bool is_empty() const { return length_ == 0; } // Returns the pointer to the start of the data in the vector. T* start() const { return start_; } // Access individual vector elements - checks bounds in debug mode. T& operator[](int index) const { DOUBLE_CONVERSION_ASSERT(0 <= index && index < length_); return start_[index]; } T& first() { return start_[0]; } T& last() { return start_[length_ - 1]; } void pop_back() { DOUBLE_CONVERSION_ASSERT(!is_empty()); --length_; } private: T* start_; int length_; }; // Helper class for building result strings in a character buffer. The // purpose of the class is to use safe operations that checks the // buffer bounds on all operations in debug mode. class StringBuilder { public: StringBuilder(char* buffer, int buffer_size) : buffer_(buffer, buffer_size), position_(0) {} ~StringBuilder() { if (!is_finalized()) Finalize(); } int size() const { return buffer_.length(); } // Get the current position in the builder. int position() const { DOUBLE_CONVERSION_ASSERT(!is_finalized()); return position_; } // Reset the position. void Reset() { position_ = 0; } // Add a single character to the builder. It is not allowed to add // 0-characters; use the Finalize() method to terminate the string // instead. void AddCharacter(char c) { DOUBLE_CONVERSION_ASSERT(c != '\0'); DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length()); buffer_[position_++] = c; } // Add an entire string to the builder. Uses strlen() internally to // compute the length of the input string. void AddString(const char* s) { AddSubstring(s, StrLength(s)); } // Add the first 'n' characters of the given string 's' to the // builder. The input string must have enough characters. void AddSubstring(const char* s, int n) { DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length()); DOUBLE_CONVERSION_ASSERT(static_cast(n) <= strlen(s)); __builtin_memmove(&buffer_[position_], s, n); position_ += n; } // Add character padding to the builder. If count is non-positive, // nothing is added to the builder. void AddPadding(char c, int count) { for (int i = 0; i < count; i++) { AddCharacter(c); } } // Finalize the string by 0-terminating it and returning the buffer. char* Finalize() { DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length()); buffer_[position_] = '\0'; // Make sure nobody managed to add a 0-character to the // buffer while building the string. DOUBLE_CONVERSION_ASSERT(strlen(buffer_.start()) == static_cast(position_)); position_ = -1; DOUBLE_CONVERSION_ASSERT(is_finalized()); return buffer_.start(); } private: Vector buffer_; int position_; bool is_finalized() const { return position_ < 0; } DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); }; // The type-based aliasing rule allows the compiler to assume that pointers of // different types (for some definition of different) never alias each other. // Thus the following code does not work: // // float f = foo(); // int fbits = *(int*)(&f); // // The compiler 'knows' that the int pointer can't refer to f since the types // don't match, so the compiler may cache f in a register, leaving random data // in fbits. Using C++ style casts makes no difference, however a pointer to // char data is assumed to alias any other pointer. This is the 'memcpy // exception'. // // Bit_cast uses the memcpy exception to move the bits from a variable of one // type of a variable of another type. Of course the end result is likely to // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) // will completely optimize BitCast away. // // There is an additional use for BitCast. // Recent gccs will warn when they see casts that may result in breakage due to // the type-based aliasing rule. If you have checked that there is no breakage // you can use BitCast to cast one pointer type to another. This confuses gcc // enough that it can no longer see that you have cast one pointer type to // another thus avoiding the warning. template Dest BitCast(const Source& source) { // Compile time assertion: sizeof(Dest) == sizeof(Source) // A compile error here means your Dest and Source have different sizes. #if __cplusplus >= 201103L static_assert(sizeof(Dest) == sizeof(Source)); #else DOUBLE_CONVERSION_UNUSED typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; #endif Dest dest; memmove(&dest, &source, sizeof(dest)); return dest; } template Dest BitCast(Source* source) { return BitCast(reinterpret_cast(source)); } } // namespace double_conversion #endif // DOUBLE_CONVERSION_UTILS_H_