/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright 2020 Justine Alexandra Roberts Tunney │ │ │ │ Permission to use, copy, modify, and/or distribute this software for │ │ any purpose with or without fee is hereby granted, provided that the │ │ above copyright notice and this permission notice appear in all copies. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │ │ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │ │ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │ │ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │ │ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │ │ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │ │ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │ │ PERFORMANCE OF THIS SOFTWARE. │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/bits/xmmintrin.internal.h" #include "libc/intrin/repstosb.h" #include "tool/build/emubin/metalsha256.h" #define ROTR(a, b) (((a) >> (b)) | ((a) << (32 - (b)))) #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define EP1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define SIG0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ ((x) >> 3)) #define SIG1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ ((x) >> 10)) const uint32_t kMetalSha256Tab[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; void MetalSha256Cleanup(struct MetalSha256Ctx *ctx) { repstosb(ctx, 0, sizeof(*ctx)); asm("pxor\t%xmm0,%xmm0\n\t" "pxor\t%xmm1,%xmm1\n\t" "pxor\t%xmm2,%xmm2\n\t" "pxor\t%xmm3,%xmm3\n\t" "pxor\t%xmm4,%xmm4\n\t" "pxor\t%xmm5,%xmm5\n\t" "pxor\t%xmm6,%xmm6\n\t" "pxor\t%xmm7,%xmm7"); } void MetalSha256Transform(uint32_t state[8], const uint8_t data[64]) { unsigned i; uint32_t a, b, c, d, e, f, g, h, t1, t2, m[64]; for (i = 0; i < 16; ++i, data += 4) { m[i] = (uint32_t)data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3]; } for (; i < 64; ++i) { m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16]; } a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; for (i = 0; i < 64; ++i) { t1 = h + EP1(e) + CH(e, f, g) + kMetalSha256Tab[i] + m[i]; t2 = EP0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } void MetalSha256Init(struct MetalSha256Ctx *ctx) { ctx->datalen = 0; ctx->bitlen = 0; ctx->state[0] = 0x6a09e667; ctx->state[1] = 0xbb67ae85; ctx->state[2] = 0x3c6ef372; ctx->state[3] = 0xa54ff53a; ctx->state[4] = 0x510e527f; ctx->state[5] = 0x9b05688c; ctx->state[6] = 0x1f83d9ab; ctx->state[7] = 0x5be0cd19; } void MetalSha256Update(struct MetalSha256Ctx *ctx, const uint8_t *data, long size) { long i; for (i = 0; i < size; ++i) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if (ctx->datalen == 64) { MetalSha256Transform(ctx->state, ctx->data); ctx->bitlen += 512; ctx->datalen = 0; } } } void MetalSha256Final(struct MetalSha256Ctx *ctx, uint8_t *hash) { long i; i = ctx->datalen; ctx->data[i++] = 0x80; if (ctx->datalen < 56) { repstosb(ctx->data + i, 0, 56 - i); } else { repstosb(ctx->data + i, 0, 64 - i); MetalSha256Transform(ctx->state, ctx->data); repstosb(ctx->data, 0, 56); } ctx->bitlen += ctx->datalen * 8; ctx->data[63] = ctx->bitlen; ctx->data[62] = ctx->bitlen >> 8; ctx->data[61] = ctx->bitlen >> 16; ctx->data[60] = ctx->bitlen >> 24; ctx->data[59] = ctx->bitlen >> 32; ctx->data[58] = ctx->bitlen >> 40; ctx->data[57] = ctx->bitlen >> 48; ctx->data[56] = ctx->bitlen >> 56; MetalSha256Transform(ctx->state, ctx->data); for (i = 0; i < 4; ++i) { hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0xff; hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0xff; hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0xff; hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0xff; hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0xff; hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0xff; hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0xff; hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0xff; } MetalSha256Cleanup(ctx); }