/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │vi: set et ft=c ts=8 sw=8 fenc=utf-8 :vi│ └─────────────────────────────────────────────────────────────────────────────*/ /* clang-format off */ /* $OpenBSD: gen.c,v 1.15 2015/11/19 23:28:03 tedu Exp $ */ /* gen - actual generation (writing) of flex scanners */ /* Copyright (c) 1990 The Regents of the University of California. */ /* All rights reserved. */ /* This code is derived from software contributed to Berkeley by */ /* Vern Paxson. */ /* The United States Government has rights in this work pursuant */ /* to contract no. DE-AC03-76SF00098 between the United States */ /* Department of Energy and the University of California. */ /* This file is part of flex. */ /* Redistribution and use in source and binary forms, with or without */ /* modification, are permitted provided that the following conditions */ /* are met: */ /* 1. Redistributions of source code must retain the above copyright */ /* notice, this list of conditions and the following disclaimer. */ /* 2. Redistributions in binary form must reproduce the above copyright */ /* notice, this list of conditions and the following disclaimer in the */ /* documentation and/or other materials provided with the distribution. */ /* Neither the name of the University nor the names of its contributors */ /* may be used to endorse or promote products derived from this software */ /* without specific prior written permission. */ /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ /* PURPOSE. */ #include "flexdef.h" #include "libc/mem/mem.h" #include "libc/fmt/fmt.h" #include "libc/fmt/fmt.h" #include "libc/str/str.h" #include "tables.h" /* declare functions that have forward references */ /* void gen_next_state PROTO((int)); */ void genecs PROTO((void)); /* void indent_put2s PROTO((const char *, const char *)); */ /* void indent_puts PROTO((const char *)); */ static int indent_level = 0; /* each level is 8 spaces */ #define indent_up() (++indent_level) #define indent_down() (--indent_level) #define set_indent(indent_val) indent_level = indent_val /* Almost everything is done in terms of arrays starting at 1, so provide * a null entry for the zero element of all C arrays. (The exception * to this is that the fast table representation generally uses the * 0 elements of its arrays, too.) */ static const char * get_int16_decl(void) { return (gentables) ? "static yyconst flex_int16_t %s[%d] =\n { 0,\n" : "static yyconst flex_int16_t * %s = 0;\n"; } static const char * get_int32_decl(void) { return (gentables) ? "static yyconst flex_int32_t %s[%d] =\n { 0,\n" : "static yyconst flex_int32_t * %s = 0;\n"; } static const char * get_state_decl(void) { return (gentables) ? "static yyconst yy_state_type %s[%d] =\n { 0,\n" : "static yyconst yy_state_type * %s = 0;\n"; } /* Indent to the current level. */ void do_indent() { int i = indent_level * 8; while (i >= 8) { outc('\t'); i -= 8; } while (i > 0) { outc(' '); --i; } } /** Make the table for possible eol matches. * @return the newly allocated rule_can_match_eol table */ static struct yytbl_data * mkeoltbl(void) { int i; flex_int8_t *tdata = NULL; struct yytbl_data *tbl; tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(tbl, YYTD_ID_RULE_CAN_MATCH_EOL); tbl->td_flags = YYTD_DATA8; tbl->td_lolen = num_rules + 1; tbl->td_data = tdata = calloc(tbl->td_lolen, sizeof(flex_int8_t)); for (i = 1; i <= num_rules; i++) tdata[i] = rule_has_nl[i] ? 1 : 0; buf_prints(&yydmap_buf, "\t{YYTD_ID_RULE_CAN_MATCH_EOL, (void**)&yy_rule_can_match_eol, sizeof(%s)},\n", "flex_int32_t"); return tbl; } /* Generate the table for possible eol matches. */ static void geneoltbl() { int i; outn("m4_ifdef( [[M4_YY_USE_LINENO]],[["); outn("/* Table of booleans, true if rule could match eol. */"); out_str_dec(get_int32_decl(), "yy_rule_can_match_eol", num_rules + 1); if (gentables) { for (i = 1; i <= num_rules; i++) { out_dec("%d, ", rule_has_nl[i] ? 1 : 0); /* format nicely, 20 numbers per line. */ if ((i % 20) == 19) out("\n "); } out(" };\n"); } outn("]])"); } /* Generate the code to keep backing-up information. */ void gen_backing_up() { if (reject || num_backing_up == 0) return; if (fullspd) indent_puts("if ( yy_current_state[-1].yy_nxt )"); else indent_puts("if ( yy_accept[yy_current_state] )"); indent_up(); indent_puts("{"); indent_puts("YY_G(yy_last_accepting_state) = yy_current_state;"); indent_puts("YY_G(yy_last_accepting_cpos) = yy_cp;"); indent_puts("}"); indent_down(); } /* Generate the code to perform the backing up. */ void gen_bu_action() { if (reject || num_backing_up == 0) return; set_indent(3); indent_puts("case 0: /* must back up */"); indent_puts("/* undo the effects of YY_DO_BEFORE_ACTION */"); indent_puts("*yy_cp = YY_G(yy_hold_char);"); if (fullspd || fulltbl) indent_puts("yy_cp = YY_G(yy_last_accepting_cpos) + 1;"); else /* * Backing-up info for compressed tables is taken \after/ * yy_cp has been incremented for the next state. */ indent_puts("yy_cp = YY_G(yy_last_accepting_cpos);"); indent_puts("yy_current_state = YY_G(yy_last_accepting_state);"); indent_puts("goto yy_find_action;"); outc('\n'); set_indent(0); } /** mkctbl - make full speed compressed transition table * This is an array of structs; each struct a pair of integers. * You should call mkssltbl() immediately after this. * Then, I think, mkecstbl(). Arrrg. * @return the newly allocated trans table */ static struct yytbl_data * mkctbl(void) { int i; struct yytbl_data *tbl = NULL; flex_int32_t *tdata = NULL, curr = 0; int end_of_buffer_action = num_rules + 1; buf_prints(&yydmap_buf, "\t{YYTD_ID_TRANSITION, (void**)&yy_transition, sizeof(%s)},\n", ((tblend + numecs + 1) >= INT16_MAX || long_align) ? "flex_int32_t" : "flex_int16_t"); tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(tbl, YYTD_ID_TRANSITION); tbl->td_flags = YYTD_DATA32 | YYTD_STRUCT; tbl->td_hilen = 0; tbl->td_lolen = tblend + numecs + 1; /* number of structs */ tbl->td_data = tdata = calloc(tbl->td_lolen * 2, sizeof(flex_int32_t)); /* * We want the transition to be represented as the offset to the next * state, not the actual state number, which is what it currently is. * The offset is base[nxt[i]] - (base of current state)]. That's * just the difference between the starting points of the two * involved states (to - from). * * First, though, we need to find some way to put in our end-of-buffer * flags and states. We do this by making a state with absolutely no * transitions. We put it at the end of the table. */ /* * We need to have room in nxt/chk for two more slots: One for the * action and one for the end-of-buffer transition. We now *assume* * that we're guaranteed the only character we'll try to index this * nxt/chk pair with is EOB, i.e., 0, so we don't have to make sure * there's room for jam entries for other characters. */ while (tblend + 2 >= current_max_xpairs) expand_nxt_chk(); while (lastdfa + 1 >= current_max_dfas) increase_max_dfas(); base[lastdfa + 1] = tblend + 2; nxt[tblend + 1] = end_of_buffer_action; chk[tblend + 1] = numecs + 1; chk[tblend + 2] = 1; /* anything but EOB */ /* So that "make test" won't show arb. differences. */ nxt[tblend + 2] = 0; /* * Make sure every state has an end-of-buffer transition and an * action #. */ for (i = 0; i <= lastdfa; ++i) { int anum = dfaacc[i].dfaacc_state; int offset = base[i]; chk[offset] = EOB_POSITION; chk[offset - 1] = ACTION_POSITION; nxt[offset - 1] = anum; /* action number */ } for (i = 0; i <= tblend; ++i) { if (chk[i] == EOB_POSITION) { tdata[curr++] = 0; tdata[curr++] = base[lastdfa + 1] - i; } else if (chk[i] == ACTION_POSITION) { tdata[curr++] = 0; tdata[curr++] = nxt[i]; } else if (chk[i] > numecs || chk[i] == 0) { tdata[curr++] = 0; tdata[curr++] = 0; } else { /* verify, transition */ tdata[curr++] = chk[i]; tdata[curr++] = base[nxt[i]] - (i - chk[i]); } } /* Here's the final, end-of-buffer state. */ tdata[curr++] = chk[tblend + 1]; tdata[curr++] = nxt[tblend + 1]; tdata[curr++] = chk[tblend + 2]; tdata[curr++] = nxt[tblend + 2]; return tbl; } /** Make start_state_list table. * @return the newly allocated start_state_list table */ static struct yytbl_data * mkssltbl(void) { struct yytbl_data *tbl = NULL; flex_int32_t *tdata = NULL; flex_int32_t i; tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(tbl, YYTD_ID_START_STATE_LIST); tbl->td_flags = YYTD_DATA32 | YYTD_PTRANS; tbl->td_hilen = 0; tbl->td_lolen = lastsc * 2 + 1; tbl->td_data = tdata = calloc(tbl->td_lolen, sizeof(flex_int32_t)); for (i = 0; i <= lastsc * 2; ++i) tdata[i] = base[i]; buf_prints(&yydmap_buf, "\t{YYTD_ID_START_STATE_LIST, (void**)&yy_start_state_list, sizeof(%s)},\n", "struct yy_trans_info*"); return tbl; } /* genctbl - generates full speed compressed transition table */ void genctbl() { int i; int end_of_buffer_action = num_rules + 1; /* Table of verify for transition and offset to next state. */ if (gentables) out_dec("static yyconst struct yy_trans_info yy_transition[%d] =\n {\n", tblend + numecs + 1); else outn("static yyconst struct yy_trans_info *yy_transition = 0;"); /* * We want the transition to be represented as the offset to the next * state, not the actual state number, which is what it currently is. * The offset is base[nxt[i]] - (base of current state)]. That's * just the difference between the starting points of the two * involved states (to - from). * * First, though, we need to find some way to put in our end-of-buffer * flags and states. We do this by making a state with absolutely no * transitions. We put it at the end of the table. */ /* * We need to have room in nxt/chk for two more slots: One for the * action and one for the end-of-buffer transition. We now *assume* * that we're guaranteed the only character we'll try to index this * nxt/chk pair with is EOB, i.e., 0, so we don't have to make sure * there's room for jam entries for other characters. */ while (tblend + 2 >= current_max_xpairs) expand_nxt_chk(); while (lastdfa + 1 >= current_max_dfas) increase_max_dfas(); base[lastdfa + 1] = tblend + 2; nxt[tblend + 1] = end_of_buffer_action; chk[tblend + 1] = numecs + 1; chk[tblend + 2] = 1; /* anything but EOB */ /* So that "make test" won't show arb. differences. */ nxt[tblend + 2] = 0; /* * Make sure every state has an end-of-buffer transition and an * action #. */ for (i = 0; i <= lastdfa; ++i) { int anum = dfaacc[i].dfaacc_state; int offset = base[i]; chk[offset] = EOB_POSITION; chk[offset - 1] = ACTION_POSITION; nxt[offset - 1] = anum; /* action number */ } for (i = 0; i <= tblend; ++i) { if (chk[i] == EOB_POSITION) transition_struct_out(0, base[lastdfa + 1] - i); else if (chk[i] == ACTION_POSITION) transition_struct_out(0, nxt[i]); else if (chk[i] > numecs || chk[i] == 0) transition_struct_out(0, 0); /* unused slot */ else /* verify, transition */ transition_struct_out(chk[i], base[nxt[i]] - (i - chk[i])); } /* Here's the final, end-of-buffer state. */ transition_struct_out(chk[tblend + 1], nxt[tblend + 1]); transition_struct_out(chk[tblend + 2], nxt[tblend + 2]); if (gentables) outn(" };\n"); /* Table of pointers to start states. */ if (gentables) out_dec("static yyconst struct yy_trans_info *yy_start_state_list[%d] =\n", lastsc * 2 + 1); else outn("static yyconst struct yy_trans_info **yy_start_state_list =0;"); if (gentables) { outn(" {"); for (i = 0; i <= lastsc * 2; ++i) out_dec(" &yy_transition[%d],\n", base[i]); dataend(); } if (useecs) genecs(); } /* mkecstbl - Make equivalence-class tables. */ struct yytbl_data * mkecstbl(void) { int i; struct yytbl_data *tbl = NULL; flex_int32_t *tdata = NULL; tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(tbl, YYTD_ID_EC); tbl->td_flags |= YYTD_DATA32; tbl->td_hilen = 0; tbl->td_lolen = csize; tbl->td_data = tdata = calloc(tbl->td_lolen, sizeof(flex_int32_t)); for (i = 1; i < csize; ++i) { ecgroup[i] = ABS(ecgroup[i]); tdata[i] = ecgroup[i]; } buf_prints(&yydmap_buf, "\t{YYTD_ID_EC, (void**)&yy_ec, sizeof(%s)},\n", "flex_int32_t"); return tbl; } /* Generate equivalence-class tables. */ void genecs() { int i, j; int numrows; out_str_dec(get_int32_decl(), "yy_ec", csize); for (i = 1; i < csize; ++i) { ecgroup[i] = ABS(ecgroup[i]); mkdata(ecgroup[i]); } dataend(); if (trace) { fputs(_("\n\nEquivalence Classes:\n\n"), stderr); numrows = csize / 8; for (j = 0; j < numrows; ++j) { for (i = j; i < csize; i = i + numrows) { fprintf(stderr, "%4s = %-2d", readable_form(i), ecgroup[i]); putc(' ', stderr); } putc('\n', stderr); } } } /* Generate the code to find the action number. */ void gen_find_action() { if (fullspd) indent_puts("yy_act = yy_current_state[-1].yy_nxt;"); else if (fulltbl) indent_puts("yy_act = yy_accept[yy_current_state];"); else if (reject) { indent_puts("yy_current_state = *--YY_G(yy_state_ptr);"); indent_puts("YY_G(yy_lp) = yy_accept[yy_current_state];"); outn("find_rule: /* we branch to this label when backing up */"); indent_puts ("for ( ; ; ) /* until we find what rule we matched */"); indent_up(); indent_puts("{"); indent_puts ("if ( YY_G(yy_lp) && YY_G(yy_lp) < yy_accept[yy_current_state + 1] )"); indent_up(); indent_puts("{"); indent_puts("yy_act = yy_acclist[YY_G(yy_lp)];"); if (variable_trailing_context_rules) { indent_puts ("if ( yy_act & YY_TRAILING_HEAD_MASK ||"); indent_puts(" YY_G(yy_looking_for_trail_begin) )"); indent_up(); indent_puts("{"); indent_puts ("if ( yy_act == YY_G(yy_looking_for_trail_begin) )"); indent_up(); indent_puts("{"); indent_puts("YY_G(yy_looking_for_trail_begin) = 0;"); indent_puts("yy_act &= ~YY_TRAILING_HEAD_MASK;"); indent_puts("break;"); indent_puts("}"); indent_down(); indent_puts("}"); indent_down(); indent_puts ("else if ( yy_act & YY_TRAILING_MASK )"); indent_up(); indent_puts("{"); indent_puts ("YY_G(yy_looking_for_trail_begin) = yy_act & ~YY_TRAILING_MASK;"); indent_puts ("YY_G(yy_looking_for_trail_begin) |= YY_TRAILING_HEAD_MASK;"); if (real_reject) { /* * Remember matched text in case we back up * due to REJECT. */ indent_puts ("YY_G(yy_full_match) = yy_cp;"); indent_puts ("YY_G(yy_full_state) = YY_G(yy_state_ptr);"); indent_puts("YY_G(yy_full_lp) = YY_G(yy_lp);"); } indent_puts("}"); indent_down(); indent_puts("else"); indent_up(); indent_puts("{"); indent_puts("YY_G(yy_full_match) = yy_cp;"); indent_puts ("YY_G(yy_full_state) = YY_G(yy_state_ptr);"); indent_puts("YY_G(yy_full_lp) = YY_G(yy_lp);"); indent_puts("break;"); indent_puts("}"); indent_down(); indent_puts("++YY_G(yy_lp);"); indent_puts("goto find_rule;"); } else { /* * Remember matched text in case we back up due to * trailing context plus REJECT. */ indent_up(); indent_puts("{"); indent_puts("YY_G(yy_full_match) = yy_cp;"); indent_puts("break;"); indent_puts("}"); indent_down(); } indent_puts("}"); indent_down(); indent_puts("--yy_cp;"); /* * We could consolidate the following two lines with those at * the beginning, but at the cost of complaints that we're * branching inside a loop. */ indent_puts("yy_current_state = *--YY_G(yy_state_ptr);"); indent_puts("YY_G(yy_lp) = yy_accept[yy_current_state];"); indent_puts("}"); indent_down(); } else { /* compressed */ indent_puts("yy_act = yy_accept[yy_current_state];"); if (interactive && !reject) { /* * Do the guaranteed-needed backing up to figure out * the match. */ indent_puts("if ( yy_act == 0 )"); indent_up(); indent_puts("{ /* have to back up */"); indent_puts ("yy_cp = YY_G(yy_last_accepting_cpos);"); indent_puts ("yy_current_state = YY_G(yy_last_accepting_state);"); indent_puts ("yy_act = yy_accept[yy_current_state];"); indent_puts("}"); indent_down(); } } } /* mkftbl - make the full table and return the struct . * you should call mkecstbl() after this. */ struct yytbl_data * mkftbl(void) { int i; int end_of_buffer_action = num_rules + 1; struct yytbl_data *tbl; flex_int32_t *tdata = NULL; tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(tbl, YYTD_ID_ACCEPT); tbl->td_flags |= YYTD_DATA32; tbl->td_hilen = 0; /* it's a one-dimensional array */ tbl->td_lolen = lastdfa + 1; tbl->td_data = tdata = calloc(tbl->td_lolen, sizeof(flex_int32_t)); dfaacc[end_of_buffer_state].dfaacc_state = end_of_buffer_action; for (i = 1; i <= lastdfa; ++i) { int anum = dfaacc[i].dfaacc_state; tdata[i] = anum; if (trace && anum) fprintf(stderr, _("state # %d accepts: [%d]\n"), i, anum); } buf_prints(&yydmap_buf, "\t{YYTD_ID_ACCEPT, (void**)&yy_accept, sizeof(%s)},\n", long_align ? "flex_int32_t" : "flex_int16_t"); return tbl; } /* genftbl - generate full transition table */ void genftbl() { int i; int end_of_buffer_action = num_rules + 1; out_str_dec(long_align ? get_int32_decl() : get_int16_decl(), "yy_accept", lastdfa + 1); dfaacc[end_of_buffer_state].dfaacc_state = end_of_buffer_action; for (i = 1; i <= lastdfa; ++i) { int anum = dfaacc[i].dfaacc_state; mkdata(anum); if (trace && anum) fprintf(stderr, _("state # %d accepts: [%d]\n"), i, anum); } dataend(); if (useecs) genecs(); /* * Don't have to dump the actual full table entries - they were * created on-the-fly. */ } /* Generate the code to find the next compressed-table state. */ void gen_next_compressed_state(char_map) char *char_map; { indent_put2s("YY_CHAR yy_c = %s;", char_map); /* * Save the backing-up info \before/ computing the next state because * we always compute one more state than needed - we always proceed * until we reach a jam state */ gen_backing_up(); indent_puts ("while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )"); indent_up(); indent_puts("{"); indent_puts("yy_current_state = (int) yy_def[yy_current_state];"); if (usemecs) { /* * We've arrange it so that templates are never chained to * one another. This means we can afford to make a very * simple test to see if we need to convert to yy_c's * meta-equivalence class without worrying about erroneously * looking up the meta-equivalence class twice */ do_indent(); /* lastdfa + 2 is the beginning of the templates */ out_dec("if ( yy_current_state >= %d )\n", lastdfa + 2); indent_up(); indent_puts("yy_c = yy_meta[(unsigned int) yy_c];"); indent_down(); } indent_puts("}"); indent_down(); indent_puts ("yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c];"); } /* Generate the code to find the next match. */ void gen_next_match() { /* * NOTE - changes in here should be reflected in gen_next_state() and * gen_NUL_trans(). */ char *char_map = useecs ? "yy_ec[YY_SC_TO_UI(*yy_cp)] " : "YY_SC_TO_UI(*yy_cp)"; char *char_map_2 = useecs ? "yy_ec[YY_SC_TO_UI(*++yy_cp)] " : "YY_SC_TO_UI(*++yy_cp)"; if (fulltbl) { if (gentables) indent_put2s ("while ( (yy_current_state = yy_nxt[yy_current_state][ %s ]) > 0 )", char_map); else indent_put2s ("while ( (yy_current_state = yy_nxt[yy_current_state*YY_NXT_LOLEN + %s ]) > 0 )", char_map); indent_up(); if (num_backing_up > 0) { indent_puts("{"); gen_backing_up(); outc('\n'); } indent_puts("++yy_cp;"); if (num_backing_up > 0) indent_puts("}"); indent_down(); outc('\n'); indent_puts("yy_current_state = -yy_current_state;"); } else if (fullspd) { indent_puts("{"); indent_puts ("yyconst struct yy_trans_info *yy_trans_info;\n"); indent_puts("YY_CHAR yy_c;\n"); indent_put2s("for ( yy_c = %s;", char_map); indent_puts (" (yy_trans_info = &yy_current_state[(unsigned int) yy_c])->"); indent_puts("yy_verify == yy_c;"); indent_put2s(" yy_c = %s )", char_map_2); indent_up(); if (num_backing_up > 0) indent_puts("{"); indent_puts("yy_current_state += yy_trans_info->yy_nxt;"); if (num_backing_up > 0) { outc('\n'); gen_backing_up(); indent_puts("}"); } indent_down(); indent_puts("}"); } else { /* compressed */ indent_puts("do"); indent_up(); indent_puts("{"); gen_next_state(false); indent_puts("++yy_cp;"); indent_puts("}"); indent_down(); do_indent(); if (interactive) out_dec("while ( yy_base[yy_current_state] != %d );\n", jambase); else out_dec("while ( yy_current_state != %d );\n", jamstate); if (!reject && !interactive) { /* * Do the guaranteed-needed backing up to figure out * the match. */ indent_puts ("yy_cp = YY_G(yy_last_accepting_cpos);"); indent_puts ("yy_current_state = YY_G(yy_last_accepting_state);"); } } } /* Generate the code to find the next state. */ void gen_next_state(worry_about_NULs) int worry_about_NULs; { /* NOTE - changes in here should be reflected * in gen_next_match() */ char char_map[256]; if (worry_about_NULs && !nultrans) { if (useecs) snprintf(char_map, sizeof(char_map), "(*yy_cp ? yy_ec[YY_SC_TO_UI(*yy_cp)] : %d)", NUL_ec); else snprintf(char_map, sizeof(char_map), "(*yy_cp ? YY_SC_TO_UI(*yy_cp) : %d)", NUL_ec); } else strlcpy(char_map, useecs ? "yy_ec[YY_SC_TO_UI(*yy_cp)] " : "YY_SC_TO_UI(*yy_cp)", sizeof char_map); if (worry_about_NULs && nultrans) { if (!fulltbl && !fullspd) /* Compressed tables back up *before* they match. */ gen_backing_up(); indent_puts("if ( *yy_cp )"); indent_up(); indent_puts("{"); } if (fulltbl) { if (gentables) indent_put2s ("yy_current_state = yy_nxt[yy_current_state][%s];", char_map); else indent_put2s ("yy_current_state = yy_nxt[yy_current_state*YY_NXT_LOLEN + %s];", char_map); } else if (fullspd) indent_put2s ("yy_current_state += yy_current_state[%s].yy_nxt;", char_map); else gen_next_compressed_state(char_map); if (worry_about_NULs && nultrans) { indent_puts("}"); indent_down(); indent_puts("else"); indent_up(); indent_puts ("yy_current_state = yy_NUL_trans[yy_current_state];"); indent_down(); } if (fullspd || fulltbl) gen_backing_up(); if (reject) indent_puts("*YY_G(yy_state_ptr)++ = yy_current_state;"); } /* Generate the code to make a NUL transition. */ void gen_NUL_trans() { /* NOTE - changes in here should be reflected * in gen_next_match() */ /* * Only generate a definition for "yy_cp" if we'll generate code that * uses it. Otherwise lint and the like complain. */ int need_backing_up = (num_backing_up > 0 && !reject); if (need_backing_up && (!nultrans || fullspd || fulltbl)) /* * We're going to need yy_cp lying around for the call below * to gen_backing_up(). */ indent_puts("char *yy_cp = YY_G(yy_c_buf_p);"); outc('\n'); if (nultrans) { indent_puts ("yy_current_state = yy_NUL_trans[yy_current_state];"); indent_puts("yy_is_jam = (yy_current_state == 0);"); } else if (fulltbl) { do_indent(); if (gentables) out_dec("yy_current_state = yy_nxt[yy_current_state][%d];\n", NUL_ec); else out_dec("yy_current_state = yy_nxt[yy_current_state*YY_NXT_LOLEN + %d];\n", NUL_ec); indent_puts("yy_is_jam = (yy_current_state <= 0);"); } else if (fullspd) { do_indent(); out_dec("int yy_c = %d;\n", NUL_ec); indent_puts ("yyconst struct yy_trans_info *yy_trans_info;\n"); indent_puts ("yy_trans_info = &yy_current_state[(unsigned int) yy_c];"); indent_puts("yy_current_state += yy_trans_info->yy_nxt;"); indent_puts ("yy_is_jam = (yy_trans_info->yy_verify != yy_c);"); } else { char NUL_ec_str[20]; snprintf(NUL_ec_str, sizeof(NUL_ec_str), "%d", NUL_ec); gen_next_compressed_state(NUL_ec_str); do_indent(); out_dec("yy_is_jam = (yy_current_state == %d);\n", jamstate); if (reject) { /* * Only stack this state if it's a transition we * actually make. If we stack it on a jam, then the * state stack and yy_c_buf_p get out of sync. */ indent_puts("if ( ! yy_is_jam )"); indent_up(); indent_puts ("*YY_G(yy_state_ptr)++ = yy_current_state;"); indent_down(); } } /* * If we've entered an accepting state, back up; note that compressed * tables have *already* done such backing up, so we needn't bother * with it again. */ if (need_backing_up && (fullspd || fulltbl)) { outc('\n'); indent_puts("if ( ! yy_is_jam )"); indent_up(); indent_puts("{"); gen_backing_up(); indent_puts("}"); indent_down(); } } /* Generate the code to find the start state. */ void gen_start_state() { if (fullspd) { if (bol_needed) { indent_puts ("yy_current_state = yy_start_state_list[YY_G(yy_start) + YY_AT_BOL()];"); } else indent_puts ("yy_current_state = yy_start_state_list[YY_G(yy_start)];"); } else { indent_puts("yy_current_state = YY_G(yy_start);"); if (bol_needed) indent_puts("yy_current_state += YY_AT_BOL();"); if (reject) { /* Set up for storing up states. */ outn("m4_ifdef( [[M4_YY_USES_REJECT]],\n[["); indent_puts ("YY_G(yy_state_ptr) = YY_G(yy_state_buf);"); indent_puts ("*YY_G(yy_state_ptr)++ = yy_current_state;"); outn("]])"); } } } /* gentabs - generate data statements for the transition tables */ void gentabs() { int i, j, k, *accset, nacc, *acc_array, total_states; int end_of_buffer_action = num_rules + 1; struct yytbl_data *yyacc_tbl = 0, *yymeta_tbl = 0, *yybase_tbl = 0, *yydef_tbl = 0, *yynxt_tbl = 0, *yychk_tbl = 0, *yyacclist_tbl = 0; flex_int32_t *yyacc_data = 0, *yybase_data = 0, *yydef_data = 0, *yynxt_data = 0, *yychk_data = 0, *yyacclist_data = 0; flex_int32_t yybase_curr = 0, yyacclist_curr = 0, yyacc_curr = 0; acc_array = allocate_integer_array(current_max_dfas); nummt = 0; /* * The compressed table format jams by entering the "jam state", * losing information about the previous state in the process. In * order to recover the previous state, we effectively need to keep * backing-up information. */ ++num_backing_up; if (reject) { /* * Write out accepting list and pointer list. * * First we generate the "yy_acclist" array. In the process, we * compute the indices that will go into the "yy_accept" * array, and save the indices in the dfaacc array. */ int EOB_accepting_list[2]; /* Set up accepting structures for the End Of Buffer state. */ EOB_accepting_list[0] = 0; EOB_accepting_list[1] = end_of_buffer_action; accsiz[end_of_buffer_state] = 1; dfaacc[end_of_buffer_state].dfaacc_set = EOB_accepting_list; out_str_dec(long_align ? get_int32_decl() : get_int16_decl(), "yy_acclist", MAX(numas, 1) + 1); buf_prints(&yydmap_buf, "\t{YYTD_ID_ACCLIST, (void**)&yy_acclist, sizeof(%s)},\n", long_align ? "flex_int32_t" : "flex_int16_t"); yyacclist_tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(yyacclist_tbl, YYTD_ID_ACCLIST); yyacclist_tbl->td_lolen = MAX(numas, 1) + 1; yyacclist_tbl->td_data = yyacclist_data = calloc(yyacclist_tbl->td_lolen, sizeof(flex_int32_t)); yyacclist_curr = 1; j = 1; /* index into "yy_acclist" array */ for (i = 1; i <= lastdfa; ++i) { acc_array[i] = j; if (accsiz[i] != 0) { accset = dfaacc[i].dfaacc_set; nacc = accsiz[i]; if (trace) fprintf(stderr, _("state # %d accepts: "), i); for (k = 1; k <= nacc; ++k) { int accnum = accset[k]; ++j; if (variable_trailing_context_rules && !(accnum & YY_TRAILING_HEAD_MASK) && accnum > 0 && accnum <= num_rules && rule_type[accnum] == RULE_VARIABLE) { /* * Special hack to flag * accepting number as part * of trailing context rule. */ accnum |= YY_TRAILING_MASK; } mkdata(accnum); yyacclist_data[yyacclist_curr++] = accnum; if (trace) { fprintf(stderr, "[%d]", accset[k]); if (k < nacc) fputs(", ", stderr); else putc('\n', stderr); } } } } /* add accepting number for the "jam" state */ acc_array[i] = j; dataend(); if (tablesext) { yytbl_data_compress(yyacclist_tbl); if (yytbl_data_fwrite(&tableswr, yyacclist_tbl) < 0) flexerror(_("Could not write yyacclist_tbl")); yytbl_data_destroy(yyacclist_tbl); yyacclist_tbl = NULL; } } else { dfaacc[end_of_buffer_state].dfaacc_state = end_of_buffer_action; for (i = 1; i <= lastdfa; ++i) acc_array[i] = dfaacc[i].dfaacc_state; /* add accepting number for jam state */ acc_array[i] = 0; } /* Begin generating yy_accept */ /* * Spit out "yy_accept" array. If we're doing "reject", it'll be * pointers into the "yy_acclist" array. Otherwise it's actual * accepting numbers. In either case, we just dump the numbers. */ /* * "lastdfa + 2" is the size of "yy_accept"; includes room for C * arrays beginning at 0 and for "jam" state. */ k = lastdfa + 2; if (reject) /* * We put a "cap" on the table associating lists of accepting * numbers with state numbers. This is needed because we * tell where the end of an accepting list is by looking at * where the list for the next state starts. */ ++k; out_str_dec(long_align ? get_int32_decl() : get_int16_decl(), "yy_accept", k); buf_prints(&yydmap_buf, "\t{YYTD_ID_ACCEPT, (void**)&yy_accept, sizeof(%s)},\n", long_align ? "flex_int32_t" : "flex_int16_t"); yyacc_tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(yyacc_tbl, YYTD_ID_ACCEPT); yyacc_tbl->td_lolen = k; yyacc_tbl->td_data = yyacc_data = calloc(yyacc_tbl->td_lolen, sizeof(flex_int32_t)); yyacc_curr = 1; for (i = 1; i <= lastdfa; ++i) { mkdata(acc_array[i]); yyacc_data[yyacc_curr++] = acc_array[i]; if (!reject && trace && acc_array[i]) fprintf(stderr, _("state # %d accepts: [%d]\n"), i, acc_array[i]); } /* Add entry for "jam" state. */ mkdata(acc_array[i]); yyacc_data[yyacc_curr++] = acc_array[i]; if (reject) { /* Add "cap" for the list. */ mkdata(acc_array[i]); yyacc_data[yyacc_curr++] = acc_array[i]; } dataend(); if (tablesext) { yytbl_data_compress(yyacc_tbl); if (yytbl_data_fwrite(&tableswr, yyacc_tbl) < 0) flexerror(_("Could not write yyacc_tbl")); yytbl_data_destroy(yyacc_tbl); yyacc_tbl = NULL; } /* End generating yy_accept */ if (useecs) { genecs(); if (tablesext) { struct yytbl_data *tbl; tbl = mkecstbl(); yytbl_data_compress(tbl); if (yytbl_data_fwrite(&tableswr, tbl) < 0) flexerror(_("Could not write ecstbl")); yytbl_data_destroy(tbl); tbl = 0; } } if (usemecs) { /* Begin generating yy_meta */ /* * Write out meta-equivalence classes (used to index * templates with). */ flex_int32_t *yymecs_data = NULL; yymeta_tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(yymeta_tbl, YYTD_ID_META); yymeta_tbl->td_lolen = numecs + 1; yymeta_tbl->td_data = yymecs_data = calloc(yymeta_tbl->td_lolen, sizeof(flex_int32_t)); if (trace) fputs(_("\n\nMeta-Equivalence Classes:\n"), stderr); out_str_dec(get_int32_decl(), "yy_meta", numecs + 1); buf_prints(&yydmap_buf, "\t{YYTD_ID_META, (void**)&yy_meta, sizeof(%s)},\n", "flex_int32_t"); for (i = 1; i <= numecs; ++i) { if (trace) fprintf(stderr, "%d = %d\n", i, ABS(tecbck[i])); mkdata(ABS(tecbck[i])); yymecs_data[i] = ABS(tecbck[i]); } dataend(); if (tablesext) { yytbl_data_compress(yymeta_tbl); if (yytbl_data_fwrite(&tableswr, yymeta_tbl) < 0) flexerror(_ ("Could not write yymeta_tbl")); yytbl_data_destroy(yymeta_tbl); yymeta_tbl = NULL; } /* End generating yy_meta */ } total_states = lastdfa + numtemps; /* Begin generating yy_base */ out_str_dec((tblend >= INT16_MAX || long_align) ? get_int32_decl() : get_int16_decl(), "yy_base", total_states + 1); buf_prints(&yydmap_buf, "\t{YYTD_ID_BASE, (void**)&yy_base, sizeof(%s)},\n", (tblend >= INT16_MAX || long_align) ? "flex_int32_t" : "flex_int16_t"); yybase_tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(yybase_tbl, YYTD_ID_BASE); yybase_tbl->td_lolen = total_states + 1; yybase_tbl->td_data = yybase_data = calloc(yybase_tbl->td_lolen, sizeof(flex_int32_t)); yybase_curr = 1; for (i = 1; i <= lastdfa; ++i) { int d = def[i]; if (base[i] == JAMSTATE) base[i] = jambase; if (d == JAMSTATE) def[i] = jamstate; else if (d < 0) { /* Template reference. */ ++tmpuses; def[i] = lastdfa - d + 1; } mkdata(base[i]); yybase_data[yybase_curr++] = base[i]; } /* Generate jam state's base index. */ mkdata(base[i]); yybase_data[yybase_curr++] = base[i]; for (++i /* skip jam state */ ; i <= total_states; ++i) { mkdata(base[i]); yybase_data[yybase_curr++] = base[i]; def[i] = jamstate; } dataend(); if (tablesext) { yytbl_data_compress(yybase_tbl); if (yytbl_data_fwrite(&tableswr, yybase_tbl) < 0) flexerror(_("Could not write yybase_tbl")); yytbl_data_destroy(yybase_tbl); yybase_tbl = NULL; } /* End generating yy_base */ /* Begin generating yy_def */ out_str_dec((total_states >= INT16_MAX || long_align) ? get_int32_decl() : get_int16_decl(), "yy_def", total_states + 1); buf_prints(&yydmap_buf, "\t{YYTD_ID_DEF, (void**)&yy_def, sizeof(%s)},\n", (total_states >= INT16_MAX || long_align) ? "flex_int32_t" : "flex_int16_t"); yydef_tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(yydef_tbl, YYTD_ID_DEF); yydef_tbl->td_lolen = total_states + 1; yydef_tbl->td_data = yydef_data = calloc(yydef_tbl->td_lolen, sizeof(flex_int32_t)); for (i = 1; i <= total_states; ++i) { mkdata(def[i]); yydef_data[i] = def[i]; } dataend(); if (tablesext) { yytbl_data_compress(yydef_tbl); if (yytbl_data_fwrite(&tableswr, yydef_tbl) < 0) flexerror(_("Could not write yydef_tbl")); yytbl_data_destroy(yydef_tbl); yydef_tbl = NULL; } /* End generating yy_def */ /* Begin generating yy_nxt */ out_str_dec((total_states >= INT16_MAX || long_align) ? get_int32_decl() : get_int16_decl(), "yy_nxt", tblend + 1); buf_prints(&yydmap_buf, "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n", (total_states >= INT16_MAX || long_align) ? "flex_int32_t" : "flex_int16_t"); yynxt_tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(yynxt_tbl, YYTD_ID_NXT); yynxt_tbl->td_lolen = tblend + 1; yynxt_tbl->td_data = yynxt_data = calloc(yynxt_tbl->td_lolen, sizeof(flex_int32_t)); for (i = 1; i <= tblend; ++i) { /* * Note, the order of the following test is important. If * chk[i] is 0, then nxt[i] is undefined. */ if (chk[i] == 0 || nxt[i] == 0) nxt[i] = jamstate; /* new state is the JAM state */ mkdata(nxt[i]); yynxt_data[i] = nxt[i]; } dataend(); if (tablesext) { yytbl_data_compress(yynxt_tbl); if (yytbl_data_fwrite(&tableswr, yynxt_tbl) < 0) flexerror(_("Could not write yynxt_tbl")); yytbl_data_destroy(yynxt_tbl); yynxt_tbl = NULL; } /* End generating yy_nxt */ /* Begin generating yy_chk */ out_str_dec((total_states >= INT16_MAX || long_align) ? get_int32_decl() : get_int16_decl(), "yy_chk", tblend + 1); buf_prints(&yydmap_buf, "\t{YYTD_ID_CHK, (void**)&yy_chk, sizeof(%s)},\n", (total_states >= INT16_MAX || long_align) ? "flex_int32_t" : "flex_int16_t"); yychk_tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(yychk_tbl, YYTD_ID_CHK); yychk_tbl->td_lolen = tblend + 1; yychk_tbl->td_data = yychk_data = calloc(yychk_tbl->td_lolen, sizeof(flex_int32_t)); for (i = 1; i <= tblend; ++i) { if (chk[i] == 0) ++nummt; mkdata(chk[i]); yychk_data[i] = chk[i]; } dataend(); if (tablesext) { yytbl_data_compress(yychk_tbl); if (yytbl_data_fwrite(&tableswr, yychk_tbl) < 0) flexerror(_("Could not write yychk_tbl")); yytbl_data_destroy(yychk_tbl); yychk_tbl = NULL; } /* End generating yy_chk */ free(acc_array); } /* Write out a formatted string (with a secondary string argument) at the * current indentation level, adding a final newline. */ void indent_put2s(fmt, arg) const char *fmt, *arg; { do_indent(); out_str(fmt, arg); outn(""); } /* Write out a string at the current indentation level, adding a final * newline. */ void indent_puts(str) const char *str; { do_indent(); outn(str); } /* make_tables - generate transition tables and finishes generating output file */ void make_tables() { int i; int did_eof_rule = false; struct yytbl_data *yynultrans_tbl; skelout(); /* %% [2.0] - break point in skel */ /* * First, take care of YY_DO_BEFORE_ACTION depending on yymore being * used. */ set_indent(1); if (yymore_used && !yytext_is_array) { indent_puts("YY_G(yytext_ptr) -= YY_G(yy_more_len); \\"); indent_puts ("yyleng = (size_t) (yy_cp - YY_G(yytext_ptr)); \\"); } else indent_puts("yyleng = (size_t) (yy_cp - yy_bp); \\"); /* Now also deal with copying yytext_ptr to yytext if needed. */ skelout(); /* %% [3.0] - break point in skel */ if (yytext_is_array) { if (yymore_used) indent_puts ("if ( yyleng + YY_G(yy_more_offset) >= YYLMAX ) \\"); else indent_puts("if ( yyleng >= YYLMAX ) \\"); indent_up(); indent_puts ("YY_FATAL_ERROR( \"token too large, exceeds YYLMAX\" ); \\"); indent_down(); if (yymore_used) { indent_puts ("yy_flex_strncpy( &yytext[YY_G(yy_more_offset)], YY_G(yytext_ptr), yyleng + 1 M4_YY_CALL_LAST_ARG); \\"); indent_puts("yyleng += YY_G(yy_more_offset); \\"); indent_puts ("YY_G(yy_prev_more_offset) = YY_G(yy_more_offset); \\"); indent_puts("YY_G(yy_more_offset) = 0; \\"); } else { indent_puts ("yy_flex_strncpy( yytext, YY_G(yytext_ptr), yyleng + 1 M4_YY_CALL_LAST_ARG); \\"); } } set_indent(0); skelout(); /* %% [4.0] - break point in skel */ /* This is where we REALLY begin generating the tables. */ out_dec("#define YY_NUM_RULES %d\n", num_rules); out_dec("#define YY_END_OF_BUFFER %d\n", num_rules + 1); if (fullspd) { /* * Need to define the transet type as a size large enough to * hold the biggest offset. */ int total_table_size = tblend + numecs + 1; char *trans_offset_type = (total_table_size >= INT16_MAX || long_align) ? "flex_int32_t" : "flex_int16_t"; set_indent(0); indent_puts("struct yy_trans_info"); indent_up(); indent_puts("{"); /* * We require that yy_verify and yy_nxt must be of the same * size int. */ indent_put2s("%s yy_verify;", trans_offset_type); /* * In cases where its sister yy_verify *is* a "yes, there is * a transition", yy_nxt is the offset (in records) to the * next state. In most cases where there is no transition, * the value of yy_nxt is irrelevant. If yy_nxt is the -1th * record of a state, though, then yy_nxt is the action * number for that state. */ indent_put2s("%s yy_nxt;", trans_offset_type); indent_puts("};"); indent_down(); } else { /* * We generate a bogus 'struct yy_trans_info' data type so we * can guarantee that it is always declared in the skel. This * is so we can compile "sizeof(struct yy_trans_info)" in any * scanner. */ indent_puts ("/* This struct is not used in this scanner,"); indent_puts(" but its presence is necessary. */"); indent_puts("struct yy_trans_info"); indent_up(); indent_puts("{"); indent_puts("flex_int32_t yy_verify;"); indent_puts("flex_int32_t yy_nxt;"); indent_puts("};"); indent_down(); } if (fullspd) { genctbl(); if (tablesext) { struct yytbl_data *tbl; tbl = mkctbl(); yytbl_data_compress(tbl); if (yytbl_data_fwrite(&tableswr, tbl) < 0) flexerror(_("Could not write ftbl")); yytbl_data_destroy(tbl); tbl = mkssltbl(); yytbl_data_compress(tbl); if (yytbl_data_fwrite(&tableswr, tbl) < 0) flexerror(_("Could not write ssltbl")); yytbl_data_destroy(tbl); tbl = 0; if (useecs) { tbl = mkecstbl(); yytbl_data_compress(tbl); if (yytbl_data_fwrite(&tableswr, tbl) < 0) flexerror(_ ("Could not write ecstbl")); yytbl_data_destroy(tbl); tbl = 0; } } } else if (fulltbl) { genftbl(); if (tablesext) { struct yytbl_data *tbl; tbl = mkftbl(); yytbl_data_compress(tbl); if (yytbl_data_fwrite(&tableswr, tbl) < 0) flexerror(_("Could not write ftbl")); yytbl_data_destroy(tbl); tbl = 0; if (useecs) { tbl = mkecstbl(); yytbl_data_compress(tbl); if (yytbl_data_fwrite(&tableswr, tbl) < 0) flexerror(_ ("Could not write ecstbl")); yytbl_data_destroy(tbl); tbl = 0; } } } else gentabs(); if (do_yylineno) { geneoltbl(); if (tablesext) { struct yytbl_data *tbl; tbl = mkeoltbl(); yytbl_data_compress(tbl); if (yytbl_data_fwrite(&tableswr, tbl) < 0) flexerror(_("Could not write eoltbl")); yytbl_data_destroy(tbl); tbl = 0; } } /* * Definitions for backing up. We don't need them if REJECT is being * used because then we use an alternative backin-up technique * instead. */ if (num_backing_up > 0 && !reject) { if (!C_plus_plus && !reentrant) { indent_puts ("static yy_state_type yy_last_accepting_state;"); indent_puts ("static char *yy_last_accepting_cpos;\n"); } } if (nultrans) { flex_int32_t *yynultrans_data = NULL; /* Begin generating yy_NUL_trans */ out_str_dec(get_state_decl(), "yy_NUL_trans", lastdfa + 1); buf_prints(&yydmap_buf, "\t{YYTD_ID_NUL_TRANS, (void**)&yy_NUL_trans, sizeof(%s)},\n", (fullspd) ? "struct yy_trans_info*" : "flex_int32_t"); yynultrans_tbl = calloc(1, sizeof(struct yytbl_data)); yytbl_data_init(yynultrans_tbl, YYTD_ID_NUL_TRANS); if (fullspd) yynultrans_tbl->td_flags |= YYTD_PTRANS; yynultrans_tbl->td_lolen = lastdfa + 1; yynultrans_tbl->td_data = yynultrans_data = calloc(yynultrans_tbl->td_lolen, sizeof(flex_int32_t)); for (i = 1; i <= lastdfa; ++i) { if (fullspd) { out_dec(" &yy_transition[%d],\n", base[i]); yynultrans_data[i] = base[i]; } else { mkdata(nultrans[i]); yynultrans_data[i] = nultrans[i]; } } dataend(); if (tablesext) { yytbl_data_compress(yynultrans_tbl); if (yytbl_data_fwrite(&tableswr, yynultrans_tbl) < 0) flexerror(_ ("Could not write yynultrans_tbl")); yytbl_data_destroy(yynultrans_tbl); yynultrans_tbl = NULL; } /* End generating yy_NUL_trans */ } if (!C_plus_plus && !reentrant) { indent_puts("extern int yy_flex_debug;"); indent_put2s("int yy_flex_debug = %s;\n", ddebug ? "1" : "0"); } if (ddebug) { /* Spit out table mapping rules to line * numbers. */ out_str_dec(long_align ? get_int32_decl() : get_int16_decl(), "yy_rule_linenum", num_rules); for (i = 1; i < num_rules; ++i) mkdata(rule_linenum[i]); dataend(); } if (reject) { outn("m4_ifdef( [[M4_YY_USES_REJECT]],\n[["); /* Declare state buffer variables. */ if (!C_plus_plus && !reentrant) { outn("static yy_state_type *yy_state_buf=0, *yy_state_ptr=0;"); outn("static char *yy_full_match;"); outn("static int yy_lp;"); } if (variable_trailing_context_rules) { if (!C_plus_plus && !reentrant) { outn("static int yy_looking_for_trail_begin = 0;"); outn("static int yy_full_lp;"); outn("static int *yy_full_state;"); } out_hex("#define YY_TRAILING_MASK 0x%x\n", (unsigned int) YY_TRAILING_MASK); out_hex("#define YY_TRAILING_HEAD_MASK 0x%x\n", (unsigned int) YY_TRAILING_HEAD_MASK); } outn("#define REJECT \\"); outn("{ \\"); outn("*yy_cp = YY_G(yy_hold_char); /* undo effects of setting up yytext */ \\"); outn("yy_cp = YY_G(yy_full_match); /* restore poss. backed-over text */ \\"); if (variable_trailing_context_rules) { outn("YY_G(yy_lp) = YY_G(yy_full_lp); /* restore orig. accepting pos. */ \\"); outn("YY_G(yy_state_ptr) = YY_G(yy_full_state); /* restore orig. state */ \\"); outn("yy_current_state = *YY_G(yy_state_ptr); /* restore curr. state */ \\"); } outn("++YY_G(yy_lp); \\"); outn("goto find_rule; \\"); outn("}"); outn("]])\n"); } else { outn("/* The intent behind this definition is that it'll catch"); outn(" * any uses of REJECT which flex missed."); outn(" */"); outn("#define REJECT reject_used_but_not_detected"); } if (yymore_used) { if (!C_plus_plus) { if (yytext_is_array) { if (!reentrant) { indent_puts("static int yy_more_offset = 0;"); indent_puts("static int yy_prev_more_offset = 0;"); } } else if (!reentrant) { indent_puts ("static int yy_more_flag = 0;"); indent_puts ("static int yy_more_len = 0;"); } } if (yytext_is_array) { indent_puts ("#define yymore() (YY_G(yy_more_offset) = yy_flex_strlen( yytext M4_YY_CALL_LAST_ARG))"); indent_puts("#define YY_NEED_STRLEN"); indent_puts("#define YY_MORE_ADJ 0"); indent_puts ("#define YY_RESTORE_YY_MORE_OFFSET \\"); indent_up(); indent_puts("{ \\"); indent_puts ("YY_G(yy_more_offset) = YY_G(yy_prev_more_offset); \\"); indent_puts("yyleng -= YY_G(yy_more_offset); \\"); indent_puts("}"); indent_down(); } else { indent_puts ("#define yymore() (YY_G(yy_more_flag) = 1)"); indent_puts ("#define YY_MORE_ADJ YY_G(yy_more_len)"); indent_puts("#define YY_RESTORE_YY_MORE_OFFSET"); } } else { indent_puts ("#define yymore() yymore_used_but_not_detected"); indent_puts("#define YY_MORE_ADJ 0"); indent_puts("#define YY_RESTORE_YY_MORE_OFFSET"); } if (!C_plus_plus) { if (yytext_is_array) { outn("#ifndef YYLMAX"); outn("#define YYLMAX 8192"); outn("#endif\n"); if (!reentrant) { outn("char yytext[YYLMAX];"); outn("char *yytext_ptr;"); } } else { if (!reentrant) outn("char *yytext;"); } } out(&action_array[defs1_offset]); line_directive_out(stdout, 0); skelout(); /* %% [5.0] - break point in skel */ if (!C_plus_plus) { if (use_read) { outn("\terrno=0; \\"); outn("\twhile ( (result = read( fileno(yyin), (char *) buf, max_size )) < 0 ) \\"); outn("\t{ \\"); outn("\t\tif( errno != EINTR) \\"); outn("\t\t{ \\"); outn("\t\t\tYY_FATAL_ERROR( \"input in flex scanner failed\" ); \\"); outn("\t\t\tbreak; \\"); outn("\t\t} \\"); outn("\t\terrno=0; \\"); outn("\t\tclearerr(yyin); \\"); outn("\t}\\"); } else { outn("\tif ( YY_CURRENT_BUFFER_LVALUE->yy_is_interactive ) \\"); outn("\t\t{ \\"); outn("\t\tint c = '*'; \\"); outn("\t\tsize_t n; \\"); outn("\t\tfor ( n = 0; n < max_size && \\"); outn("\t\t\t (c = getc( yyin )) != EOF && c != '\\n'; ++n ) \\"); outn("\t\t\tbuf[n] = (char) c; \\"); outn("\t\tif ( c == '\\n' ) \\"); outn("\t\t\tbuf[n++] = (char) c; \\"); outn("\t\tif ( c == EOF && ferror( yyin ) ) \\"); outn("\t\t\tYY_FATAL_ERROR( \"input in flex scanner failed\" ); \\"); outn("\t\tresult = n; \\"); outn("\t\t} \\"); outn("\telse \\"); outn("\t\t{ \\"); outn("\t\terrno=0; \\"); outn("\t\twhile ( (result = fread(buf, 1, max_size, yyin))==0 && ferror(yyin)) \\"); outn("\t\t\t{ \\"); outn("\t\t\tif( errno != EINTR) \\"); outn("\t\t\t\t{ \\"); outn("\t\t\t\tYY_FATAL_ERROR( \"input in flex scanner failed\" ); \\"); outn("\t\t\t\tbreak; \\"); outn("\t\t\t\t} \\"); outn("\t\t\terrno=0; \\"); outn("\t\t\tclearerr(yyin); \\"); outn("\t\t\t} \\"); outn("\t\t}\\"); } } skelout(); /* %% [6.0] - break point in skel */ indent_puts("#define YY_RULE_SETUP \\"); indent_up(); if (bol_needed) { indent_puts("if ( yyleng > 0 ) \\"); indent_up(); indent_puts("YY_CURRENT_BUFFER_LVALUE->yy_at_bol = \\"); indent_puts("\t\t(yytext[yyleng - 1] == '\\n'); \\"); indent_down(); } indent_puts("YY_USER_ACTION"); indent_down(); skelout(); /* %% [7.0] - break point in skel */ /* Copy prolog to output file. */ out(&action_array[prolog_offset]); line_directive_out(stdout, 0); skelout(); /* %% [8.0] - break point in skel */ set_indent(2); if (yymore_used && !yytext_is_array) { indent_puts("YY_G(yy_more_len) = 0;"); indent_puts("if ( YY_G(yy_more_flag) )"); indent_up(); indent_puts("{"); indent_puts ("YY_G(yy_more_len) = YY_G(yy_c_buf_p) - YY_G(yytext_ptr);"); indent_puts("YY_G(yy_more_flag) = 0;"); indent_puts("}"); indent_down(); } skelout(); /* %% [9.0] - break point in skel */ gen_start_state(); /* Note, don't use any indentation. */ outn("yy_match:"); gen_next_match(); skelout(); /* %% [10.0] - break point in skel */ set_indent(2); gen_find_action(); skelout(); /* %% [11.0] - break point in skel */ outn("m4_ifdef( [[M4_YY_USE_LINENO]],[["); indent_puts ("if ( yy_act != YY_END_OF_BUFFER && yy_rule_can_match_eol[yy_act] )"); indent_up(); indent_puts("{"); indent_puts("yy_size_t yyl;"); do_indent(); out_str("for ( yyl = %s; yyl < yyleng; ++yyl )\n", yymore_used ? (yytext_is_array ? "YY_G(yy_prev_more_offset)" : "YY_G(yy_more_len)") : "0"); indent_up(); indent_puts("if ( yytext[yyl] == '\\n' )"); indent_up(); indent_puts("M4_YY_INCR_LINENO();"); indent_down(); indent_down(); indent_puts("}"); indent_down(); outn("]])"); skelout(); /* %% [12.0] - break point in skel */ if (ddebug) { indent_puts("if ( yy_flex_debug )"); indent_up(); indent_puts("{"); indent_puts("if ( yy_act == 0 )"); indent_up(); indent_puts(C_plus_plus ? "std::cerr << \"--scanner backing up\\n\";" : "fprintf( stderr, \"--scanner backing up\\n\" );"); indent_down(); do_indent(); out_dec("else if ( yy_act < %d )\n", num_rules); indent_up(); if (C_plus_plus) { indent_puts ("std::cerr << \"--accepting rule at line \" << yy_rule_linenum[yy_act] <<"); indent_puts (" \"(\\\"\" << yytext << \"\\\")\\n\";"); } else { indent_puts ("fprintf( stderr, \"--accepting rule at line %ld (\\\"%s\\\")\\n\","); indent_puts (" (long)yy_rule_linenum[yy_act], yytext );"); } indent_down(); do_indent(); out_dec("else if ( yy_act == %d )\n", num_rules); indent_up(); if (C_plus_plus) { indent_puts ("std::cerr << \"--accepting default rule (\\\"\" << yytext << \"\\\")\\n\";"); } else { indent_puts ("fprintf( stderr, \"--accepting default rule (\\\"%s\\\")\\n\","); indent_puts(" yytext );"); } indent_down(); do_indent(); out_dec("else if ( yy_act == %d )\n", num_rules + 1); indent_up(); indent_puts(C_plus_plus ? "std::cerr << \"--(end of buffer or a NUL)\\n\";" : "fprintf( stderr, \"--(end of buffer or a NUL)\\n\" );"); indent_down(); do_indent(); outn("else"); indent_up(); if (C_plus_plus) { indent_puts ("std::cerr << \"--EOF (start condition \" << YY_START << \")\\n\";"); } else { indent_puts ("fprintf( stderr, \"--EOF (start condition %d)\\n\", YY_START );"); } indent_down(); indent_puts("}"); indent_down(); } /* Copy actions to output file. */ skelout(); /* %% [13.0] - break point in skel */ indent_up(); gen_bu_action(); out(&action_array[action_offset]); line_directive_out(stdout, 0); /* generate cases for any missing EOF rules */ for (i = 1; i <= lastsc; ++i) if (!sceof[i]) { do_indent(); out_str("case YY_STATE_EOF(%s):\n", scname[i]); did_eof_rule = true; } if (did_eof_rule) { indent_up(); indent_puts("yyterminate();"); indent_down(); } /* Generate code for handling NUL's, if needed. */ /* * First, deal with backing up and setting up yy_cp if the scanner * finds that it should JAM on the NUL. */ skelout(); /* %% [14.0] - break point in skel */ set_indent(4); if (fullspd || fulltbl) indent_puts("yy_cp = YY_G(yy_c_buf_p);"); else { /* compressed table */ if (!reject && !interactive) { /* * Do the guaranteed-needed backing up to figure out * the match. */ indent_puts ("yy_cp = YY_G(yy_last_accepting_cpos);"); indent_puts ("yy_current_state = YY_G(yy_last_accepting_state);"); } else /* * Still need to initialize yy_cp, though * yy_current_state was set up by * yy_get_previous_state(). */ indent_puts("yy_cp = YY_G(yy_c_buf_p);"); } /* Generate code for yy_get_previous_state(). */ set_indent(1); skelout(); /* %% [15.0] - break point in skel */ gen_start_state(); set_indent(2); skelout(); /* %% [16.0] - break point in skel */ gen_next_state(true); set_indent(1); skelout(); /* %% [17.0] - break point in skel */ gen_NUL_trans(); skelout(); /* %% [18.0] - break point in skel */ skelout(); /* %% [19.0] - break point in skel */ /* Update BOL and yylineno inside of input(). */ if (bol_needed) { indent_puts ("YY_CURRENT_BUFFER_LVALUE->yy_at_bol = (c == '\\n');"); if (do_yylineno) { indent_puts ("if ( YY_CURRENT_BUFFER_LVALUE->yy_at_bol )"); indent_up(); indent_puts("M4_YY_INCR_LINENO();"); indent_down(); } } else if (do_yylineno) { indent_puts("if ( c == '\\n' )"); indent_up(); indent_puts("M4_YY_INCR_LINENO();"); indent_down(); } skelout(); /* Copy remainder of input to output. */ line_directive_out(stdout, 1); if (sectnum == 3) { OUT_BEGIN_CODE(); (void) flexscan(); /* copy remainder of input to output */ OUT_END_CODE(); } }