// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef DOUBLE_CONVERSION_DIY_FP_H_ #define DOUBLE_CONVERSION_DIY_FP_H_ #include "third_party/double-conversion/utils.h" namespace double_conversion { // This "Do It Yourself Floating Point" class implements a floating-point number // with a uint64 significand and an int exponent. Normalized DiyFp numbers will // have the most significant bit of the significand set. // Multiplication and Subtraction do not normalize their results. // DiyFp store only non-negative numbers and are not designed to contain special // doubles (NaN and Infinity). class DiyFp { public: static const int kSignificandSize = 64; DiyFp() : f_(0), e_(0) {} DiyFp(const uint64_t significand, const int32_t exponent) : f_(significand), e_(exponent) {} // this -= other. // The exponents of both numbers must be the same and the significand of this // must be greater or equal than the significand of other. // The result will not be normalized. void Subtract(const DiyFp& other) { DOUBLE_CONVERSION_ASSERT(e_ == other.e_); DOUBLE_CONVERSION_ASSERT(f_ >= other.f_); f_ -= other.f_; } // Returns a - b. // The exponents of both numbers must be the same and a must be greater // or equal than b. The result will not be normalized. static DiyFp Minus(const DiyFp& a, const DiyFp& b) { DiyFp result = a; result.Subtract(b); return result; } // this *= other. void Multiply(const DiyFp& other) { // Simply "emulates" a 128 bit multiplication. // However: the resulting number only contains 64 bits. The least // significant 64 bits are only used for rounding the most significant 64 // bits. const uint64_t kM32 = 0xFFFFFFFFU; const uint64_t a = f_ >> 32; const uint64_t b = f_ & kM32; const uint64_t c = other.f_ >> 32; const uint64_t d = other.f_ & kM32; const uint64_t ac = a * c; const uint64_t bc = b * c; const uint64_t ad = a * d; const uint64_t bd = b * d; // By adding 1U << 31 to tmp we round the final result. // Halfway cases will be rounded up. const uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32) + (1U << 31); e_ += other.e_ + 64; f_ = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32); } // returns a * b; static DiyFp Times(const DiyFp& a, const DiyFp& b) { DiyFp result = a; result.Multiply(b); return result; } void Normalize() { DOUBLE_CONVERSION_ASSERT(f_ != 0); uint64_t significand = f_; int32_t exponent = e_; // This method is mainly called for normalizing boundaries. In general, // boundaries need to be shifted by 10 bits, and we optimize for this case. const uint64_t k10MSBits = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFC00000, 00000000); while ((significand & k10MSBits) == 0) { significand <<= 10; exponent -= 10; } while ((significand & kUint64MSB) == 0) { significand <<= 1; exponent--; } f_ = significand; e_ = exponent; } static DiyFp Normalize(const DiyFp& a) { DiyFp result = a; result.Normalize(); return result; } uint64_t f() const { return f_; } int32_t e() const { return e_; } void set_f(uint64_t new_value) { f_ = new_value; } void set_e(int32_t new_value) { e_ = new_value; } private: static const uint64_t kUint64MSB = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000); uint64_t f_; int32_t e_; }; } // namespace double_conversion #endif // DOUBLE_CONVERSION_DIY_FP_H_