/* clang-format off */ /* ===-- divdc3.c - Implement __divdc3 -------------------------------------=== * * The LLVM Compiler Infrastructure * * This file is dual licensed under the MIT and the University of Illinois Open * Source Licenses. See LICENSE.TXT for details. * * ===----------------------------------------------------------------------=== * * This file implements __divdc3 for the compiler_rt library. * * ===----------------------------------------------------------------------=== */ STATIC_YOINK("huge_compiler_rt_license"); #define DOUBLE_PRECISION #include "third_party/compiler_rt/fp_lib.inc" #include "third_party/compiler_rt/int_lib.h" #include "third_party/compiler_rt/int_math.h" /* Returns: the quotient of (a + ib) / (c + id) */ COMPILER_RT_ABI Dcomplex __divdc3(double __a, double __b, double __c, double __d) { int __ilogbw = 0; double __logbw = __compiler_rt_logb(crt_fmax(crt_fabs(__c), crt_fabs(__d))); if (crt_isfinite(__logbw)) { __ilogbw = (int)__logbw; __c = crt_scalbn(__c, -__ilogbw); __d = crt_scalbn(__d, -__ilogbw); } double __denom = __c * __c + __d * __d; Dcomplex z; COMPLEX_REAL(z) = crt_scalbn((__a * __c + __b * __d) / __denom, -__ilogbw); COMPLEX_IMAGINARY(z) = crt_scalbn((__b * __c - __a * __d) / __denom, -__ilogbw); if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) { if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) { COMPLEX_REAL(z) = crt_copysign(CRT_INFINITY, __c) * __a; COMPLEX_IMAGINARY(z) = crt_copysign(CRT_INFINITY, __c) * __b; } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) && crt_isfinite(__d)) { __a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a); __b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b); COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); } else if (crt_isinf(__logbw) && __logbw > 0.0 && crt_isfinite(__a) && crt_isfinite(__b)) { __c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c); __d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d); COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d); COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d); } } return z; }