/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright 2020 Justine Alexandra Roberts Tunney │ │ │ │ This program is free software; you can redistribute it and/or modify │ │ it under the terms of the GNU General Public License as published by │ │ the Free Software Foundation; version 2 of the License. │ │ │ │ This program is distributed in the hope that it will be useful, but │ │ WITHOUT ANY WARRANTY; without even the implied warranty of │ │ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU │ │ General Public License for more details. │ │ │ │ You should have received a copy of the GNU General Public License │ │ along with this program; if not, write to the Free Software │ │ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA │ │ 02110-1301 USA │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "dsp/core/core.h" /** * Computes Σ𝑥ᵢΣ𝑥ⱼΣ𝑥ₖΣ𝑥ₗΣ𝑥ₘΣ𝑥ₙ(δ₁𝑥ᵢ+δ₂𝑥ⱼ+δ₃𝑥ₖ+δ₄𝑥ₗ+δ₅𝑥ₘ+δ₆𝑥ₙ)² over 𝐿..𝐻 * * “As soon as an Analytical Engine exists, it will necessarily * guide the future course of the science. Whenever any result * is sought by its aid, the question will then arise — by what * course of calculation can these results be arrived at by the * machine in the shortest time? * * — Charles Babbage (Life of a Philosopher, 1864) * * @see itu.int/rec/R-REC-BT.601/ */ double DifferSumSq(const double D[static 6], double L, double H) { double T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T2, T20, T21, T22, T23, T24, T25, T26, T27, T3, T4, T5, T6, T7, T8, T9; T2 = H * H, T3 = (H * H * H), T4 = (H * H * H * H), T5 = (H * H * H * H * H), T6 = (H * H * H * H * H * H), T7 = -10 * H, T8 = (H * H * H * H * H * H * H), T9 = (L * L * L * L * L * L * L * L), T10 = (L * L * L * L * L * L * L), T11 = (L * L * L * L * L * L), T12 = (L * L * L * L * L), T13 = -45 * T2, T14 = (L * L * L * L), T15 = 180 * T3, T16 = 120 * T2, T17 = (L * L * L), T18 = L * L, T19 = 18 * T2, T20 = (H * H * H * H * H * H * H * H); T21 = 45 * T4; T22 = 3 * T9 + (-12 * H - 18) * T10 + (12 * T2 + 54 * H + 45) * T11 + (12 * T3 - T19 - 90 * H - 60) * T12 + (-30 * T4 - 90 * T3 + T13 + 60 * H + 45) * T14 + (12 * T5 + 90 * T4 + T15 + T16 - 18) * T17 + (12 * T6 + 18 * T5 - T21 - 120 * T3 - 90 * T2 - 18 * H + 3) * T18 + (-12 * T8 - 54 * T6 - 90 * T5 - 60 * T4 + T19 + 6 * H) * L + 3 * T20 + 18 * T8 + 45 * T6 + 60 * T5 + T21 + 18 * T3 + 3 * T2; T23 = 2 * T9 + (T7 - 13) * T10 + (20 * T2 + 55 * H + 36) * T11 + (-22 * T3 - 93 * T2 - 126 * H - 55) * T12 + (20 * T4 + 95 * T3 + 180 * T2 + 155 * H + 50) * T14 + (-22 * T5 - 95 * T4 - T15 - 190 * T2 - 110 * H - 27) * T17 + (20 * T6 + 93 * T5 + 180 * T4 + 190 * T3 + T16 + 45 * H + 8) * T18 + (-10 * T8 - 55 * T6 - 126 * T5 - 155 * T4 - 110 * T3 + T13 + T7 - 1) * L + 2 * T20 + 13 * T8 + 36 * T6 + 55 * T5 + 50 * T4 + 27 * T3 + 8 * T2 + H; T24 = T22 * D[3], T25 = T22 * D[2], T26 = T22 * D[1], T27 = T22 * D[0]; return (T23 * D[5] * D[5] + (T22 * D[4] + T24 + T25 + T26 + T27) * D[5] + T23 * D[4] * D[4] + (T24 + T25 + T26 + T27) * D[4] + T23 * D[3] * D[3] + (T25 + T26 + T27) * D[3] + T23 * D[2] * D[2] + (T26 + T27) * D[2] + T23 * D[1] * D[1] + T22 * D[0] * D[1] + T23 * D[0] * D[0]) / 6; }