157 lines
4.4 KiB
C
157 lines
4.4 KiB
C
|
/* clang-format off */
|
||
|
//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
||
|
// Source Licenses. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the following soft-fp_t comparison routines:
|
||
|
//
|
||
|
// __eqsf2 __gesf2 __unordsf2
|
||
|
// __lesf2 __gtsf2
|
||
|
// __ltsf2
|
||
|
// __nesf2
|
||
|
//
|
||
|
// The semantics of the routines grouped in each column are identical, so there
|
||
|
// is a single implementation for each, and wrappers to provide the other names.
|
||
|
//
|
||
|
// The main routines behave as follows:
|
||
|
//
|
||
|
// __lesf2(a,b) returns -1 if a < b
|
||
|
// 0 if a == b
|
||
|
// 1 if a > b
|
||
|
// 1 if either a or b is NaN
|
||
|
//
|
||
|
// __gesf2(a,b) returns -1 if a < b
|
||
|
// 0 if a == b
|
||
|
// 1 if a > b
|
||
|
// -1 if either a or b is NaN
|
||
|
//
|
||
|
// __unordsf2(a,b) returns 0 if both a and b are numbers
|
||
|
// 1 if either a or b is NaN
|
||
|
//
|
||
|
// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
|
||
|
// NaN values.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
STATIC_YOINK("huge_compiler_rt_license");
|
||
|
|
||
|
#define SINGLE_PRECISION
|
||
|
#include "third_party/compiler_rt/fp_lib.inc"
|
||
|
|
||
|
enum LE_RESULT {
|
||
|
LE_LESS = -1,
|
||
|
LE_EQUAL = 0,
|
||
|
LE_GREATER = 1,
|
||
|
LE_UNORDERED = 1
|
||
|
};
|
||
|
|
||
|
COMPILER_RT_ABI enum LE_RESULT
|
||
|
__lesf2(fp_t a, fp_t b) {
|
||
|
|
||
|
const srep_t aInt = toRep(a);
|
||
|
const srep_t bInt = toRep(b);
|
||
|
const rep_t aAbs = aInt & absMask;
|
||
|
const rep_t bAbs = bInt & absMask;
|
||
|
|
||
|
// If either a or b is NaN, they are unordered.
|
||
|
if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
|
||
|
|
||
|
// If a and b are both zeros, they are equal.
|
||
|
if ((aAbs | bAbs) == 0) return LE_EQUAL;
|
||
|
|
||
|
// If at least one of a and b is positive, we get the same result comparing
|
||
|
// a and b as signed integers as we would with a fp_ting-point compare.
|
||
|
if ((aInt & bInt) >= 0) {
|
||
|
if (aInt < bInt) return LE_LESS;
|
||
|
else if (aInt == bInt) return LE_EQUAL;
|
||
|
else return LE_GREATER;
|
||
|
}
|
||
|
|
||
|
// Otherwise, both are negative, so we need to flip the sense of the
|
||
|
// comparison to get the correct result. (This assumes a twos- or ones-
|
||
|
// complement integer representation; if integers are represented in a
|
||
|
// sign-magnitude representation, then this flip is incorrect).
|
||
|
else {
|
||
|
if (aInt > bInt) return LE_LESS;
|
||
|
else if (aInt == bInt) return LE_EQUAL;
|
||
|
else return LE_GREATER;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if defined(__ELF__)
|
||
|
// Alias for libgcc compatibility
|
||
|
FNALIAS(__cmpsf2, __lesf2);
|
||
|
#endif
|
||
|
|
||
|
enum GE_RESULT {
|
||
|
GE_LESS = -1,
|
||
|
GE_EQUAL = 0,
|
||
|
GE_GREATER = 1,
|
||
|
GE_UNORDERED = -1 // Note: different from LE_UNORDERED
|
||
|
};
|
||
|
|
||
|
COMPILER_RT_ABI enum GE_RESULT
|
||
|
__gesf2(fp_t a, fp_t b) {
|
||
|
|
||
|
const srep_t aInt = toRep(a);
|
||
|
const srep_t bInt = toRep(b);
|
||
|
const rep_t aAbs = aInt & absMask;
|
||
|
const rep_t bAbs = bInt & absMask;
|
||
|
|
||
|
if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
|
||
|
if ((aAbs | bAbs) == 0) return GE_EQUAL;
|
||
|
if ((aInt & bInt) >= 0) {
|
||
|
if (aInt < bInt) return GE_LESS;
|
||
|
else if (aInt == bInt) return GE_EQUAL;
|
||
|
else return GE_GREATER;
|
||
|
} else {
|
||
|
if (aInt > bInt) return GE_LESS;
|
||
|
else if (aInt == bInt) return GE_EQUAL;
|
||
|
else return GE_GREATER;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
COMPILER_RT_ABI int
|
||
|
__unordsf2(fp_t a, fp_t b) {
|
||
|
const rep_t aAbs = toRep(a) & absMask;
|
||
|
const rep_t bAbs = toRep(b) & absMask;
|
||
|
return aAbs > infRep || bAbs > infRep;
|
||
|
}
|
||
|
|
||
|
// The following are alternative names for the preceding routines.
|
||
|
|
||
|
COMPILER_RT_ABI enum LE_RESULT
|
||
|
__eqsf2(fp_t a, fp_t b) {
|
||
|
return __lesf2(a, b);
|
||
|
}
|
||
|
|
||
|
COMPILER_RT_ABI enum LE_RESULT
|
||
|
__ltsf2(fp_t a, fp_t b) {
|
||
|
return __lesf2(a, b);
|
||
|
}
|
||
|
|
||
|
COMPILER_RT_ABI enum LE_RESULT
|
||
|
__nesf2(fp_t a, fp_t b) {
|
||
|
return __lesf2(a, b);
|
||
|
}
|
||
|
|
||
|
COMPILER_RT_ABI enum GE_RESULT
|
||
|
__gtsf2(fp_t a, fp_t b) {
|
||
|
return __gesf2(a, b);
|
||
|
}
|
||
|
|
||
|
#if defined(__ARM_EABI__)
|
||
|
#if defined(COMPILER_RT_ARMHF_TARGET)
|
||
|
AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) {
|
||
|
return __unordsf2(a, b);
|
||
|
}
|
||
|
#else
|
||
|
AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) COMPILER_RT_ALIAS(__unordsf2);
|
||
|
#endif
|
||
|
#endif
|