cosmopolitan/libc/bits/bits.h

529 lines
26 KiB
C
Raw Normal View History

2020-06-15 14:18:57 +00:00
#ifndef COSMOPOLITAN_LIBC_BITS_H_
#define COSMOPOLITAN_LIBC_BITS_H_
#if !(__ASSEMBLER__ + __LINKER__ + 0)
COSMOPOLITAN_C_START_
#define CheckUnsigned(x) ((x) / !((typeof(x))(-1) < 0))
/*───────────────────────────────────────────────────────────────────────────│─╗
cosmopolitan § bits
*/
extern const bool kTrue;
extern const bool kFalse;
extern const uint8_t kReverseBits[256];
uint16_t bswap_16(uint16_t) pureconst;
uint32_t bswap_32(uint32_t) pureconst;
uint32_t bswap_64(uint32_t) pureconst;
uint32_t gray(uint32_t) pureconst;
uint32_t ungray(uint32_t) pureconst;
unsigned bcdadd(unsigned, unsigned) pureconst;
unsigned long bcd2i(unsigned long) pureconst;
unsigned long i2bcd(unsigned long) pureconst;
void bcxcpy(unsigned char (*)[16], unsigned long);
int ffs(int) pureconst;
int ffsl(long int) pureconst;
int ffsll(long long int) pureconst;
int fls(int) pureconst;
int flsl(long int) pureconst;
int flsll(long long int) pureconst;
uint8_t bitreverse8(uint8_t) libcesque pureconst;
uint16_t bitreverse16(uint16_t) libcesque pureconst;
uint32_t bitreverse32(uint32_t) libcesque pureconst;
uint64_t bitreverse64(uint64_t) libcesque pureconst;
unsigned long roundup2pow(unsigned long) libcesque pureconst;
unsigned long roundup2log(unsigned long) libcesque pureconst;
unsigned long rounddown2pow(unsigned long) libcesque pureconst;
unsigned long hamming(unsigned long, unsigned long) pureconst;
2020-06-15 14:18:57 +00:00
/*───────────────────────────────────────────────────────────────────────────│─╗
cosmopolitan § bits » no assembly required
*/
/**
* Undocumented incantations for ROR, ROL, and SAR.
*/
#define ROR(w, k) (CheckUnsigned(w) >> (k) | (w) << (sizeof(w) * 8 - (k)))
#define ROL(w, k) ((w) << (k) | CheckUnsigned(w) >> (sizeof(w) * 8 - (k)))
#define SAR(w, k) (((w) & ~(~0u >> (k))) | ((w) >> ((k) & (sizeof(w) * 8 - 1))))
#define bitreverse8(X) (kReverseBits[(X)&0xff])
#define bitreverse16(X) \
((uint16_t)kReverseBits[(X)&0xff] << 010 | \
kReverseBits[((uint16_t)(X) >> 010) & 0xff])
#ifndef __GNUC__
#define READ16LE(P) ((unsigned)(P)[1] << 010 | (unsigned)(P)[0])
#define READ32LE(P) \
((unsigned long)(P)[3] << 030 | (unsigned long)(P)[2] << 020 | \
(unsigned long)(P)[1] << 010 | (unsigned long)(P)[0])
#define READ64LE(P) \
((unsigned long long)(P)[3] << 030 | (unsigned long)(P)[2] << 020 | \
(unsigned long long)(P)[1] << 010 | (unsigned long)(P)[0])
#else
#define READ16LE(P) read16le(P)
#define READ32LE(P) read32le(P)
#define READ64LE(P) read64le(P)
#define read16le(P) \
({ \
const unsigned char *Pu = (const unsigned char *)(P); \
(uint16_t) Pu[1] << 010 | (uint16_t)Pu[0]; \
})
#define read32le(P) \
({ \
const unsigned char *Pu = (const unsigned char *)(P); \
((uint32_t)Pu[3] << 030 | (uint32_t)Pu[2] << 020 | \
(uint32_t)Pu[1] << 010 | (uint32_t)Pu[0] << 000); \
})
#define read64le(P) \
({ \
const unsigned char *Pu = (const unsigned char *)(P); \
((uint64_t)Pu[7] << 070 | (uint64_t)Pu[6] << 060 | \
(uint64_t)Pu[5] << 050 | (uint64_t)Pu[4] << 040 | \
(uint64_t)Pu[3] << 030 | (uint64_t)Pu[2] << 020 | \
(uint64_t)Pu[1] << 010 | (uint64_t)Pu[0] << 000); \
})
#endif
#define WRITE16LE(P, V) \
do { \
uint8_t *Ple = (unsigned char *)(P); \
uint16_t Vle = (V); \
Ple[0] = (uint8_t)(Vle >> 000); \
Ple[1] = (uint8_t)(Vle >> 010); \
2020-06-15 14:18:57 +00:00
} while (0)
#define WRITE32LE(P, V) \
do { \
uint8_t *Ple = (unsigned char *)(P); \
uint32_t Vle = (V); \
Ple[0] = (uint8_t)(Vle >> 000); \
Ple[1] = (uint8_t)(Vle >> 010); \
Ple[2] = (uint8_t)(Vle >> 020); \
Ple[3] = (uint8_t)(Vle >> 030); \
2020-06-15 14:18:57 +00:00
} while (0)
#define WRITE64LE(P, V) \
do { \
uint8_t *Ple = (unsigned char *)(P); \
uint64_t Vle = (V); \
Ple[0] = (uint8_t)(Vle >> 000); \
Ple[1] = (uint8_t)(Vle >> 010); \
Ple[2] = (uint8_t)(Vle >> 020); \
Ple[3] = (uint8_t)(Vle >> 030); \
Ple[4] = (uint8_t)(Vle >> 040); \
Ple[5] = (uint8_t)(Vle >> 050); \
Ple[6] = (uint8_t)(Vle >> 060); \
Ple[7] = (uint8_t)(Vle >> 070); \
2020-06-15 14:18:57 +00:00
} while (0)
/* TODO(jart): these ones aren't coded correctly */
#define read128le(P) ((uint128_t)read64le((P) + 8) << 0100 | read64le(P))
#define read16be(P) ((uint16_t)(*(P) << 010) | (uint16_t)(*((P) + 1)))
#define read32be(P) ((uint32_t)read16be(P) << 020 | (uint32_t)read16be((P) + 2))
#define read64be(P) ((uint64_t)read32be(P) << 040 | read32be((P) + 4))
#define read128be(P) ((uint128_t)read64be(P) << 0100 | read64be((P) + 8))
/*───────────────────────────────────────────────────────────────────────────│─╗
cosmopolitan § bits » some assembly required
*/
/**
* Constraints for virtual machine flags.
* @note we beseech clang devs for flag constraints
*/
#ifdef __GCC_ASM_FLAG_OUTPUTS__ /* GCC6+ CLANG10+ */
#define CFLAG_CONSTRAINT "=@ccc"
#define CFLAG_ASM(OP) OP
#define ZFLAG_CONSTRAINT "=@ccz"
#define ZFLAG_ASM(OP) OP
#define OFLAG_CONSTRAINT "=@cco"
#define OFLAG_ASM(OP) OP
#define SFLAG_CONSTRAINT "=@ccs"
#define SFLAG_ASM(SP) SP
#define ABOVE_CONSTRAINT "=@cca" /* i.e. !ZF && !CF */
#define ABOVEFLAG_ASM(OP) OP
2020-06-15 14:18:57 +00:00
#else
#define CFLAG_CONSTRAINT "=q"
#define CFLAG_ASM(OP) OP "\n\tsetc\t%b0"
#define ZFLAG_CONSTRAINT "=q"
#define ZFLAG_ASM(OP) OP "\n\tsetz\t%b0"
#define OFLAG_CONSTRAINT "=q"
#define OFLAG_ASM(OP) OP "\n\tseto\t%b0"
#define SFLAG_CONSTRAINT "=q"
#define SFLAG_ASM(SP) OP "\n\tsets\t%b0"
#define ABOVE_CONSTRAINT "=@cca"
#define ABOVEFLAG_ASM(OP) OP "\n\tseta\t%b0"
2020-06-15 14:18:57 +00:00
#endif
/**
* Reads scalar from memory, offset by segment.
*
* @return *(MEM) relative to segment
* @see arch_prctl()
* @see pushpop()
*/
#define fs(MEM) __peek("fs", MEM)
#define gs(MEM) __peek("gs", MEM)
/**
* Reads scalar from memory w/ one operation.
*
* @param MEM is alignas(𝑘) uint𝑘_t[hasatleast 1] where 𝑘 {8,16,32,64}
* @return *(MEM)
* @note defeats compiler load tearing optimizations
* @note alignas(𝑘) is implied if compiler knows type
* @note alignas(𝑘) only avoids multi-core / cross-page edge cases
* @see Intel's Six-Thousand Page Manual V.3A §8.2.3.1
* @see atomic_store()
*/
#define atomic_load(MEM) \
({ \
autotype(MEM) Mem = (MEM); \
typeof(*Mem) Reg; \
asm("mov\t%1,%0" : "=r"(Reg) : "m"(*Mem)); \
Reg; \
})
/**
* Saves scalar to memory w/ one operation.
*
* This is guaranteed to happen in either one or zero operations,
* depending on whether or not it's possible for *(MEM) to be read
* afterwards. This macro only forbids compiler from using >1 ops.
*
* @param MEM is alignas(𝑘) uint𝑘_t[hasatleast 1] where 𝑘 {8,16,32,64}
* @param VAL is uint𝑘_t w/ better encoding for immediates (constexpr)
* @return VAL
* @note alignas(𝑘) on nexgen32e only needed for end of page gotcha
* @note alignas(𝑘) is implied if compiler knows type
* @note needed to defeat store tearing optimizations
* @see Intel Six-Thousand Page Manual Manual V.3A §8.2.3.1
* @see atomic_load()
*/
#define atomic_store(MEM, VAL) \
({ \
autotype(VAL) Val = (VAL); \
typeof(&Val) Mem = (MEM); \
asm("mov%z1\t%1,%0" : "=m,m"(*Mem) : "i,r"(Val)); \
Val; \
})
/**
* Returns true if bit is set in memory.
*
* This is a generically-typed Bitset<T> RAM. This macro is intended
* to be container-like with optimal machine instruction encoding, cf.
* machine-agnostic container abstractions. Memory accesses are words.
* Register allocation can be avoided if BIT is known. Be careful when
* casting character arrays since that should cause a page fault.
*
* @param MEM is uint𝑘_t[] where 𝑘 {16,32,64} base address
* @param BIT [-(2**(𝑘-1)),2**(𝑘-1)) is zero-based index
* @return true if bit is set, otherwise false
* @see Intel's Six Thousand Page Manual V.2A 3-113
* @see bts(), btr(), btc()
*/
#define bt(MEM, BIT) \
({ \
bool OldBit; \
if (isconstant(BIT)) { \
asm(CFLAG_ASM("bt%z1\t%2,%1") \
: CFLAG_CONSTRAINT(OldBit) \
: "m"((MEM)[(BIT) / (sizeof((MEM)[0]) * CHAR_BIT)]), \
"J"((BIT) % (sizeof((MEM)[0]) * CHAR_BIT)) \
: "cc"); \
} else if (sizeof((MEM)[0]) == 2) { \
asm(CFLAG_ASM("bt\t%w2,%1") \
: CFLAG_CONSTRAINT(OldBit) \
: "m"((MEM)[0]), "r"(BIT) \
: "cc"); \
} else if (sizeof((MEM)[0]) == 4) { \
asm(CFLAG_ASM("bt\t%k2,%1") \
: CFLAG_CONSTRAINT(OldBit) \
: "m"((MEM)[0]), "r"(BIT) \
: "cc"); \
} else if (sizeof((MEM)[0]) == 8) { \
asm(CFLAG_ASM("bt\t%q2,%1") \
: CFLAG_CONSTRAINT(OldBit) \
: "m"((MEM)[0]), "r"(BIT) \
: "cc"); \
} \
OldBit; \
2020-06-15 14:18:57 +00:00
})
#define bts(MEM, BIT) __BitOp("bts", BIT, MEM) /** bit test and set */
#define btr(MEM, BIT) __BitOp("btr", BIT, MEM) /** bit test and reset */
#define btc(MEM, BIT) __BitOp("btc", BIT, MEM) /** bit test and complement */
#define lockbts(MEM, BIT) __BitOp("lock bts", BIT, MEM)
#define lockbtr(MEM, BIT) __BitOp("lock btr", BIT, MEM)
#define lockbtc(MEM, BIT) __BitOp("lock btc", BIT, MEM)
#define lockinc(MEM) __ArithmeticOp1("lock inc", MEM)
#define lockdec(MEM) __ArithmeticOp1("lock dec", MEM)
#define locknot(MEM) __ArithmeticOp1("lock not", MEM)
#define lockneg(MEM) __ArithmeticOp1("lock neg", MEM)
#define lockaddeq(MEM, VAL) __ArithmeticOp2("lock add", VAL, MEM)
#define locksubeq(MEM, VAL) __ArithmeticOp2("lock sub", VAL, MEM)
#define lockxoreq(MEM, VAL) __ArithmeticOp2("lock xor", VAL, MEM)
#define lockandeq(MEM, VAL) __ArithmeticOp2("lock and", VAL, MEM)
#define lockoreq(MEM, VAL) __ArithmeticOp2("lock or", VAL, MEM)
/**
* Exchanges *MEMORY into *LOCALVAR w/ one operation.
*
* @param MEMORY is uint𝑘_t[hasatleast 1] where 𝑘 {8,16,32,64}
* @param LOCALVAR is uint𝑘_t[hasatleast 1]
* @return LOCALVAR[0]
* @see xchg()
*/
#define lockxchg(MEMORY, LOCALVAR) \
({ \
static_assert(typescompatible(typeof(*(MEMORY)), typeof(*(LOCALVAR)))); \
asm("xchg\t%0,%1" : "+%m"(*(MEMORY)), "+r"(*(LOCALVAR))); \
*(LOCALVAR); \
})
/**
* Compares and exchanges.
*
* @param IFTHING is uint𝑘_t[hasatleast 1] where 𝑘 {8,16,32,64}
* @return true if value was exchanged, otherwise false
* @see lockcmpxchg()
*/
#define cmpxchg(IFTHING, ISEQUALTOME, REPLACEITWITHME) \
({ \
bool DidIt; \
asm(ZFLAG_ASM("cmpxchg\t%3,%1") \
: ZFLAG_CONSTRAINT(DidIt), "+m"(*(IFTHING)), "+a"(*(ISEQUALTOME)) \
: "r"((typeof(*(IFTHING)))(REPLACEITWITHME)) \
: "cc"); \
DidIt; \
2020-06-15 14:18:57 +00:00
})
#define ezcmpxchg(IFTHING, ISEQUALTOME, REPLACEITWITHME) \
({ \
bool DidIt; \
autotype(IFTHING) IfThing = (IFTHING); \
typeof(*IfThing) IsEqualToMe = (ISEQUALTOME); \
typeof(*IfThing) ReplaceItWithMe = (REPLACEITWITHME); \
asm(ZFLAG_ASM("cmpxchg\t%3,%1") \
: ZFLAG_CONSTRAINT(DidIt), "+m"(*IfThing), "+a"(IsEqualToMe) \
: "r"(ReplaceItWithMe) \
: "cc"); \
DidIt; \
2020-06-15 14:18:57 +00:00
})
/**
* Compares and exchanges w/ one operation.
*
* @param IFTHING is uint𝑘_t[hasatleast 1] where 𝑘 {8,16,32,64}
* @return true if value was exchanged, otherwise false
* @see lockcmpxchg()
*/
#define lockcmpxchg(IFTHING, ISEQUALTOME, REPLACEITWITHME) \
({ \
bool DidIt; \
asm(ZFLAG_ASM("lock cmpxchg\t%3,%1") \
: ZFLAG_CONSTRAINT(DidIt), "+m"(*(IFTHING)), "+a"(*(ISEQUALTOME)) \
: "r"((typeof(*(IFTHING)))(REPLACEITWITHME)) \
: "cc"); \
DidIt; \
2020-06-15 14:18:57 +00:00
})
/**
* Gets value of extended control register.
*/
#define xgetbv(xcr_register_num) \
({ \
unsigned hi, lo; \
asm("xgetbv" : "=d"(hi), "=a"(lo) : "c"(cr_register_num)); \
(uint64_t) hi << 32 | lo; \
})
/**
* Reads model-specific register.
* @note programs running as guests won't have authorization
*/
#define rdmsr(msr) \
({ \
uint32_t lo, hi; \
asm volatile("rdmsr" : "=a"(lo), "=d"(hi) : "c"(msr)); \
(uint64_t) hi << 32 | lo; \
})
/**
* Writes model-specific register.
* @note programs running as guests won't have authorization
*/
#define wrmsr(msr, val) \
do { \
uint64_t val_ = (val); \
asm volatile("wrmsr" \
: /* no outputs */ \
: "c"(msr), "a"((uint32_t)val_), \
"d"((uint32_t)(val_ >> 32))); \
} while (0)
/**
* Tells CPU page tables changed for virtual address.
* @note programs running as guests won't have authorization
*/
#define invlpg(MEM) \
asm volatile("invlpg\t(%0)" : /* no outputs */ : "r"(MEM) : "memory")
/**
* Teleports code fragment inside _init().
*/
#define INITIALIZER(PRI, NAME, CODE) \
asm(".pushsection .init." #PRI "." #NAME ",\"ax\",@progbits\n\t" \
"call\t" #NAME "\n\t" \
".popsection"); \
textstartup optimizesize void NAME(char *rdi, const char *rsi) { \
CODE; \
asm volatile("" : /* no outputs */ : "D"(rdi), "S"(rsi)); \
}
#ifndef __STRICT_ANSI__
#if __PIC__ + __code_model_medium__ + __code_model_large__ + 0 > 1
#define __EZLEA(SYMBOL) "lea\t" SYMBOL "(%%rip),%"
#else
#define __EZLEA(SYMBOL) "mov\t$" SYMBOL ",%k"
#endif
#define weaken(symbol) ((const typeof(&(symbol)))weakaddr(#symbol))
#define strongaddr(symbolstr) \
({ \
intptr_t waddr; \
asm(__EZLEA(symbolstr) "0" : "=r"(waddr)); \
waddr; \
})
#define weakaddr(symbolstr) \
({ \
intptr_t waddr; \
asm(".weak\t" symbolstr "\n\t" __EZLEA(symbolstr) "0" : "=r"(waddr)); \
waddr; \
})
#else
#define weaken(symbol) symbol
#define weakaddr(symbolstr) &(symbolstr)
#endif
#define slowcall(fn, arg1, arg2, arg3, arg4, arg5, arg6) \
({ \
void *ax; \
asm volatile("push\t%7\n\t" \
"push\t%6\n\t" \
"push\t%5\n\t" \
"push\t%4\n\t" \
"push\t%3\n\t" \
"push\t%2\n\t" \
"push\t%1\n\t" \
"call\tslowcall" \
: "=a"(ax) \
: "g"(fn), "g"(arg1), "g"(arg2), "g"(arg3), "g"(arg4), \
"g"(arg5), "g"(arg6) \
: "memory"); \
ax; \
})
#define IsAddressCanonicalForm(P) \
({ \
intptr_t p2 = (intptr_t)(P); \
(0xffff800000000000l <= p2 && p2 <= 0x00007fffffffffffl); \
})
/*───────────────────────────────────────────────────────────────────────────│─╗
cosmopolitan § bits » optimizations
*/
#if defined(__GNUC__) && !defined(__STRICT_ANSI__)
#define bswap_16(U16) \
(isconstant(U16) ? ((((U16)&0xff00) >> 010) | (((U16)&0x00ff) << 010)) : ({ \
uint16_t Swapped16, Werd16 = (U16); \
asm("xchg\t%b0,%h0" : "=Q"(Swapped16) : "0"(Werd16)); \
Swapped16; \
}))
#define bswap_32(U32) \
(isconstant(U32) \
? ((((U32)&0xff000000) >> 030) | (((U32)&0x000000ff) << 030) | \
(((U32)&0x00ff0000) >> 010) | (((U32)&0x0000ff00) << 010)) \
: ({ \
uint32_t Swapped32, Werd32 = (U32); \
asm("bswap\t%0" : "=r"(Swapped32) : "0"(Werd32)); \
Swapped32; \
}))
#define bswap_64(U64) \
(isconstant(U64) ? ((((U64)&0xff00000000000000ul) >> 070) | \
(((U64)&0x00000000000000fful) << 070) | \
(((U64)&0x00ff000000000000ul) >> 050) | \
(((U64)&0x000000000000ff00ul) << 050) | \
(((U64)&0x0000ff0000000000ul) >> 030) | \
(((U64)&0x0000000000ff0000ul) << 030) | \
(((U64)&0x000000ff00000000ul) >> 010) | \
(((U64)&0x00000000ff000000ul) << 010)) \
: ({ \
uint64_t Swapped64, Werd64 = (U64); \
asm("bswap\t%0" : "=r"(Swapped64) : "0"(Werd64)); \
Swapped64; \
}))
#endif /* defined(__GNUC__) && !defined(__STRICT_ANSI__) */
/*───────────────────────────────────────────────────────────────────────────│─╗
cosmopolitan § bits » implementation details
*/
#define __peek(SEGMENT, ADDRESS) \
({ \
typeof(*(ADDRESS)) Pk; \
asm("mov\t%%" SEGMENT ":%1,%0" : "=r"(Pk) : "m"(*(ADDRESS))); \
Pk; \
})
#define __ArithmeticOp1(OP, MEM) \
({ \
asm(OP "%z0\t%0" : "+m"(*(MEM)) : /* no inputs */ : "cc"); \
MEM; \
})
#define __ArithmeticOp2(OP, VAL, MEM) \
({ \
asm(OP "%z0\t%1,%0" : "+m,m"(*(MEM)) : "i,r"(VAL) : "cc"); \
MEM; \
})
#define __BitOp(OP, BIT, MEM) \
({ \
bool OldBit; \
if (isconstant(BIT)) { \
asm(CFLAG_ASM(OP "%z1\t%2,%1") \
: CFLAG_CONSTRAINT(OldBit), \
"+m"((MEM)[(BIT) / (sizeof((MEM)[0]) * CHAR_BIT)]) \
: "J"((BIT) % (sizeof((MEM)[0]) * CHAR_BIT)) \
: "cc"); \
} else if (sizeof((MEM)[0]) == 2) { \
asm(CFLAG_ASM(OP "\t%w2,%1") \
: CFLAG_CONSTRAINT(OldBit), "+m"((MEM)[0]) \
: "r"(BIT) \
: "cc"); \
} else if (sizeof((MEM)[0]) == 4) { \
asm(CFLAG_ASM(OP "\t%k2,%1") \
: CFLAG_CONSTRAINT(OldBit), "+m"((MEM)[0]) \
: "r"(BIT) \
: "cc"); \
} else if (sizeof((MEM)[0]) == 8) { \
asm(CFLAG_ASM(OP "\t%q2,%1") \
: CFLAG_CONSTRAINT(OldBit), "+m"((MEM)[0]) \
: "r"(BIT) \
: "cc"); \
} \
OldBit; \
2020-06-15 14:18:57 +00:00
})
COSMOPOLITAN_C_END_
#endif /* !(__ASSEMBLER__ + __LINKER__ + 0) */
#endif /* COSMOPOLITAN_LIBC_BITS_H_ */