203 lines
4.4 KiB
C
203 lines
4.4 KiB
C
|
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
|
||
|
/*
|
||
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||
|
*/
|
||
|
/*
|
||
|
* ====================================================
|
||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
*
|
||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
* Permission to use, copy, modify, and distribute this
|
||
|
* software is freely granted, provided that this notice
|
||
|
* is preserved.
|
||
|
* ====================================================
|
||
|
*/
|
||
|
|
||
|
#define _GNU_SOURCE
|
||
|
#include "libc/math/libm.h"
|
||
|
|
||
|
float jnf(int n, float x)
|
||
|
{
|
||
|
uint32_t ix;
|
||
|
int nm1, sign, i;
|
||
|
float a, b, temp;
|
||
|
|
||
|
GET_FLOAT_WORD(ix, x);
|
||
|
sign = ix>>31;
|
||
|
ix &= 0x7fffffff;
|
||
|
if (ix > 0x7f800000) /* nan */
|
||
|
return x;
|
||
|
|
||
|
/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
|
||
|
if (n == 0)
|
||
|
return j0f(x);
|
||
|
if (n < 0) {
|
||
|
nm1 = -(n+1);
|
||
|
x = -x;
|
||
|
sign ^= 1;
|
||
|
} else
|
||
|
nm1 = n-1;
|
||
|
if (nm1 == 0)
|
||
|
return j1f(x);
|
||
|
|
||
|
sign &= n; /* even n: 0, odd n: signbit(x) */
|
||
|
x = fabsf(x);
|
||
|
if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
|
||
|
b = 0.0f;
|
||
|
else if (nm1 < x) {
|
||
|
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||
|
a = j0f(x);
|
||
|
b = j1f(x);
|
||
|
for (i=0; i<nm1; ){
|
||
|
i++;
|
||
|
temp = b;
|
||
|
b = b*(2.0f*i/x) - a;
|
||
|
a = temp;
|
||
|
}
|
||
|
} else {
|
||
|
if (ix < 0x35800000) { /* x < 2**-20 */
|
||
|
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||
|
* J(n,x) = 1/n!*(x/2)^n - ...
|
||
|
*/
|
||
|
if (nm1 > 8) /* underflow */
|
||
|
nm1 = 8;
|
||
|
temp = 0.5f * x;
|
||
|
b = temp;
|
||
|
a = 1.0f;
|
||
|
for (i=2; i<=nm1+1; i++) {
|
||
|
a *= (float)i; /* a = n! */
|
||
|
b *= temp; /* b = (x/2)^n */
|
||
|
}
|
||
|
b = b/a;
|
||
|
} else {
|
||
|
/* use backward recurrence */
|
||
|
/* x x^2 x^2
|
||
|
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||
|
* 2n - 2(n+1) - 2(n+2)
|
||
|
*
|
||
|
* 1 1 1
|
||
|
* (for large x) = ---- ------ ------ .....
|
||
|
* 2n 2(n+1) 2(n+2)
|
||
|
* -- - ------ - ------ -
|
||
|
* x x x
|
||
|
*
|
||
|
* Let w = 2n/x and h=2/x, then the above quotient
|
||
|
* is equal to the continued fraction:
|
||
|
* 1
|
||
|
* = -----------------------
|
||
|
* 1
|
||
|
* w - -----------------
|
||
|
* 1
|
||
|
* w+h - ---------
|
||
|
* w+2h - ...
|
||
|
*
|
||
|
* To determine how many terms needed, let
|
||
|
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||
|
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||
|
* When Q(k) > 1e4 good for single
|
||
|
* When Q(k) > 1e9 good for double
|
||
|
* When Q(k) > 1e17 good for quadruple
|
||
|
*/
|
||
|
/* determine k */
|
||
|
float t,q0,q1,w,h,z,tmp,nf;
|
||
|
int k;
|
||
|
|
||
|
nf = nm1+1.0f;
|
||
|
w = 2*nf/x;
|
||
|
h = 2/x;
|
||
|
z = w+h;
|
||
|
q0 = w;
|
||
|
q1 = w*z - 1.0f;
|
||
|
k = 1;
|
||
|
while (q1 < 1.0e4f) {
|
||
|
k += 1;
|
||
|
z += h;
|
||
|
tmp = z*q1 - q0;
|
||
|
q0 = q1;
|
||
|
q1 = tmp;
|
||
|
}
|
||
|
for (t=0.0f, i=k; i>=0; i--)
|
||
|
t = 1.0f/(2*(i+nf)/x-t);
|
||
|
a = t;
|
||
|
b = 1.0f;
|
||
|
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||
|
* Hence, if n*(log(2n/x)) > ...
|
||
|
* single 8.8722839355e+01
|
||
|
* double 7.09782712893383973096e+02
|
||
|
* long double 1.1356523406294143949491931077970765006170e+04
|
||
|
* then recurrent value may overflow and the result is
|
||
|
* likely underflow to zero
|
||
|
*/
|
||
|
tmp = nf*logf(fabsf(w));
|
||
|
if (tmp < 88.721679688f) {
|
||
|
for (i=nm1; i>0; i--) {
|
||
|
temp = b;
|
||
|
b = 2.0f*i*b/x - a;
|
||
|
a = temp;
|
||
|
}
|
||
|
} else {
|
||
|
for (i=nm1; i>0; i--){
|
||
|
temp = b;
|
||
|
b = 2.0f*i*b/x - a;
|
||
|
a = temp;
|
||
|
/* scale b to avoid spurious overflow */
|
||
|
if (b > 0x1p60f) {
|
||
|
a /= b;
|
||
|
t /= b;
|
||
|
b = 1.0f;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
z = j0f(x);
|
||
|
w = j1f(x);
|
||
|
if (fabsf(z) >= fabsf(w))
|
||
|
b = t*z/b;
|
||
|
else
|
||
|
b = t*w/a;
|
||
|
}
|
||
|
}
|
||
|
return sign ? -b : b;
|
||
|
}
|
||
|
|
||
|
float ynf(int n, float x)
|
||
|
{
|
||
|
uint32_t ix, ib;
|
||
|
int nm1, sign, i;
|
||
|
float a, b, temp;
|
||
|
|
||
|
GET_FLOAT_WORD(ix, x);
|
||
|
sign = ix>>31;
|
||
|
ix &= 0x7fffffff;
|
||
|
if (ix > 0x7f800000) /* nan */
|
||
|
return x;
|
||
|
if (sign && ix != 0) /* x < 0 */
|
||
|
return 0/0.0f;
|
||
|
if (ix == 0x7f800000)
|
||
|
return 0.0f;
|
||
|
|
||
|
if (n == 0)
|
||
|
return y0f(x);
|
||
|
if (n < 0) {
|
||
|
nm1 = -(n+1);
|
||
|
sign = n&1;
|
||
|
} else {
|
||
|
nm1 = n-1;
|
||
|
sign = 0;
|
||
|
}
|
||
|
if (nm1 == 0)
|
||
|
return sign ? -y1f(x) : y1f(x);
|
||
|
|
||
|
a = y0f(x);
|
||
|
b = y1f(x);
|
||
|
/* quit if b is -inf */
|
||
|
GET_FLOAT_WORD(ib,b);
|
||
|
for (i = 0; i < nm1 && ib != 0xff800000; ) {
|
||
|
i++;
|
||
|
temp = b;
|
||
|
b = (2.0f*i/x)*b - a;
|
||
|
GET_FLOAT_WORD(ib, b);
|
||
|
a = temp;
|
||
|
}
|
||
|
return sign ? -b : b;
|
||
|
}
|