282 lines
8.4 KiB
C
282 lines
8.4 KiB
C
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */
|
||
|
/*-
|
||
|
* Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include "libc/math/libm.h"
|
||
|
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||
|
long double fmal(long double x, long double y, long double z) {
|
||
|
return fma(x, y, z);
|
||
|
}
|
||
|
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
||
|
#include "libc/math/fenv.h"
|
||
|
#if LDBL_MANT_DIG == 64
|
||
|
#define LASTBIT(u) (u.i.m & 1)
|
||
|
#define SPLIT (0x1p32L + 1)
|
||
|
#elif LDBL_MANT_DIG == 113
|
||
|
#define LASTBIT(u) (u.i.lo & 1)
|
||
|
#define SPLIT (0x1p57L + 1)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* A struct dd represents a floating-point number with twice the precision
|
||
|
* of a long double. We maintain the invariant that "hi" stores the high-order
|
||
|
* bits of the result.
|
||
|
*/
|
||
|
struct dd {
|
||
|
long double hi;
|
||
|
long double lo;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Compute a+b exactly, returning the exact result in a struct dd. We assume
|
||
|
* that both a and b are finite, but make no assumptions about their relative
|
||
|
* magnitudes.
|
||
|
*/
|
||
|
static inline struct dd dd_add(long double a, long double b) {
|
||
|
struct dd ret;
|
||
|
long double s;
|
||
|
|
||
|
ret.hi = a + b;
|
||
|
s = ret.hi - a;
|
||
|
ret.lo = (a - (ret.hi - s)) + (b - s);
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute a+b, with a small tweak: The least significant bit of the
|
||
|
* result is adjusted into a sticky bit summarizing all the bits that
|
||
|
* were lost to rounding. This adjustment negates the effects of double
|
||
|
* rounding when the result is added to another number with a higher
|
||
|
* exponent. For an explanation of round and sticky bits, see any reference
|
||
|
* on FPU design, e.g.,
|
||
|
*
|
||
|
* J. Coonen. An Implementation Guide to a Proposed Standard for
|
||
|
* Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
|
||
|
*/
|
||
|
static inline long double add_adjusted(long double a, long double b) {
|
||
|
struct dd sum;
|
||
|
union ldshape u;
|
||
|
|
||
|
sum = dd_add(a, b);
|
||
|
if (sum.lo != 0) {
|
||
|
u.f = sum.hi;
|
||
|
if (!LASTBIT(u)) sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
|
||
|
}
|
||
|
return (sum.hi);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute ldexp(a+b, scale) with a single rounding error. It is assumed
|
||
|
* that the result will be subnormal, and care is taken to ensure that
|
||
|
* double rounding does not occur.
|
||
|
*/
|
||
|
static inline long double add_and_denormalize(long double a, long double b,
|
||
|
int scale) {
|
||
|
struct dd sum;
|
||
|
int bits_lost;
|
||
|
union ldshape u;
|
||
|
|
||
|
sum = dd_add(a, b);
|
||
|
|
||
|
/*
|
||
|
* If we are losing at least two bits of accuracy to denormalization,
|
||
|
* then the first lost bit becomes a round bit, and we adjust the
|
||
|
* lowest bit of sum.hi to make it a sticky bit summarizing all the
|
||
|
* bits in sum.lo. With the sticky bit adjusted, the hardware will
|
||
|
* break any ties in the correct direction.
|
||
|
*
|
||
|
* If we are losing only one bit to denormalization, however, we must
|
||
|
* break the ties manually.
|
||
|
*/
|
||
|
if (sum.lo != 0) {
|
||
|
u.f = sum.hi;
|
||
|
bits_lost = -u.i.se - scale + 1;
|
||
|
if ((bits_lost != 1) ^ LASTBIT(u))
|
||
|
sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
|
||
|
}
|
||
|
return scalbnl(sum.hi, scale);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute a*b exactly, returning the exact result in a struct dd. We assume
|
||
|
* that both a and b are normalized, so no underflow or overflow will occur.
|
||
|
* The current rounding mode must be round-to-nearest.
|
||
|
*/
|
||
|
static inline struct dd dd_mul(long double a, long double b) {
|
||
|
struct dd ret;
|
||
|
long double ha, hb, la, lb, p, q;
|
||
|
|
||
|
p = a * SPLIT;
|
||
|
ha = a - p;
|
||
|
ha += p;
|
||
|
la = a - ha;
|
||
|
|
||
|
p = b * SPLIT;
|
||
|
hb = b - p;
|
||
|
hb += p;
|
||
|
lb = b - hb;
|
||
|
|
||
|
p = ha * hb;
|
||
|
q = ha * lb + la * hb;
|
||
|
|
||
|
ret.hi = p + q;
|
||
|
ret.lo = p - ret.hi + q + la * lb;
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fused multiply-add: Compute x * y + z with a single rounding error.
|
||
|
*
|
||
|
* We use scaling to avoid overflow/underflow, along with the
|
||
|
* canonical precision-doubling technique adapted from:
|
||
|
*
|
||
|
* Dekker, T. A Floating-Point Technique for Extending the
|
||
|
* Available Precision. Numer. Math. 18, 224-242 (1971).
|
||
|
*/
|
||
|
long double fmal(long double x, long double y, long double z) {
|
||
|
#pragma STDC FENV_ACCESS ON
|
||
|
long double xs, ys, zs, adj;
|
||
|
struct dd xy, r;
|
||
|
int oround;
|
||
|
int ex, ey, ez;
|
||
|
int spread;
|
||
|
|
||
|
/*
|
||
|
* Handle special cases. The order of operations and the particular
|
||
|
* return values here are crucial in handling special cases involving
|
||
|
* infinities, NaNs, overflows, and signed zeroes correctly.
|
||
|
*/
|
||
|
if (!isfinite(x) || !isfinite(y)) return (x * y + z);
|
||
|
if (!isfinite(z)) return (z);
|
||
|
if (x == 0.0 || y == 0.0) return (x * y + z);
|
||
|
if (z == 0.0) return (x * y);
|
||
|
|
||
|
xs = frexpl(x, &ex);
|
||
|
ys = frexpl(y, &ey);
|
||
|
zs = frexpl(z, &ez);
|
||
|
oround = fegetround();
|
||
|
spread = ex + ey - ez;
|
||
|
|
||
|
/*
|
||
|
* If x * y and z are many orders of magnitude apart, the scaling
|
||
|
* will overflow, so we handle these cases specially. Rounding
|
||
|
* modes other than FE_TONEAREST are painful.
|
||
|
*/
|
||
|
if (spread < -LDBL_MANT_DIG) {
|
||
|
#ifdef FE_INEXACT
|
||
|
feraiseexcept(FE_INEXACT);
|
||
|
#endif
|
||
|
#ifdef FE_UNDERFLOW
|
||
|
if (!isnormal(z)) feraiseexcept(FE_UNDERFLOW);
|
||
|
#endif
|
||
|
switch (oround) {
|
||
|
default: /* FE_TONEAREST */
|
||
|
return (z);
|
||
|
#ifdef FE_TOWARDZERO
|
||
|
case FE_TOWARDZERO:
|
||
|
if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
|
||
|
return (z);
|
||
|
else
|
||
|
return (nextafterl(z, 0));
|
||
|
#endif
|
||
|
#ifdef FE_DOWNWARD
|
||
|
case FE_DOWNWARD:
|
||
|
if (x > 0.0 ^ y < 0.0)
|
||
|
return (z);
|
||
|
else
|
||
|
return (nextafterl(z, -INFINITY));
|
||
|
#endif
|
||
|
#ifdef FE_UPWARD
|
||
|
case FE_UPWARD:
|
||
|
if (x > 0.0 ^ y < 0.0)
|
||
|
return (nextafterl(z, INFINITY));
|
||
|
else
|
||
|
return (z);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
if (spread <= LDBL_MANT_DIG * 2)
|
||
|
zs = scalbnl(zs, -spread);
|
||
|
else
|
||
|
zs = copysignl(LDBL_MIN, zs);
|
||
|
|
||
|
fesetround(FE_TONEAREST);
|
||
|
|
||
|
/*
|
||
|
* Basic approach for round-to-nearest:
|
||
|
*
|
||
|
* (xy.hi, xy.lo) = x * y (exact)
|
||
|
* (r.hi, r.lo) = xy.hi + z (exact)
|
||
|
* adj = xy.lo + r.lo (inexact; low bit is sticky)
|
||
|
* result = r.hi + adj (correctly rounded)
|
||
|
*/
|
||
|
xy = dd_mul(xs, ys);
|
||
|
r = dd_add(xy.hi, zs);
|
||
|
|
||
|
spread = ex + ey;
|
||
|
|
||
|
if (r.hi == 0.0) {
|
||
|
/*
|
||
|
* When the addends cancel to 0, ensure that the result has
|
||
|
* the correct sign.
|
||
|
*/
|
||
|
fesetround(oround);
|
||
|
volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
|
||
|
return xy.hi + vzs + scalbnl(xy.lo, spread);
|
||
|
}
|
||
|
|
||
|
if (oround != FE_TONEAREST) {
|
||
|
/*
|
||
|
* There is no need to worry about double rounding in directed
|
||
|
* rounding modes.
|
||
|
* But underflow may not be raised correctly, example in downward rounding:
|
||
|
* fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L)
|
||
|
*/
|
||
|
long double ret;
|
||
|
#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
|
||
|
int e = fetestexcept(FE_INEXACT);
|
||
|
feclearexcept(FE_INEXACT);
|
||
|
#endif
|
||
|
fesetround(oround);
|
||
|
adj = r.lo + xy.lo;
|
||
|
ret = scalbnl(r.hi + adj, spread);
|
||
|
#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
|
||
|
if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT))
|
||
|
feraiseexcept(FE_UNDERFLOW);
|
||
|
else if (e)
|
||
|
feraiseexcept(FE_INEXACT);
|
||
|
#endif
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
adj = add_adjusted(r.lo, xy.lo);
|
||
|
if (spread + ilogbl(r.hi) > -16383)
|
||
|
return scalbnl(r.hi + adj, spread);
|
||
|
else
|
||
|
return add_and_denormalize(r.hi, adj, spread);
|
||
|
}
|
||
|
#endif
|