187 lines
3.7 KiB
C
187 lines
3.7 KiB
C
|
#include "libc/math/math.h"
|
||
|
/* #include "libc/math/atomic.h" */
|
||
|
static inline int a_clz_64(uint64_t x)
|
||
|
{
|
||
|
__asm__( "bsr %1,%0 ; xor $63,%0" : "=r"(x) : "r"(x) );
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
#define ASUINT64(x) ((union {double f; uint64_t i;}){x}).i
|
||
|
#define ZEROINFNAN (0x7ff-0x3ff-52-1)
|
||
|
|
||
|
struct num { uint64_t m; int e; int sign; };
|
||
|
|
||
|
static struct num normalize(double x)
|
||
|
{
|
||
|
uint64_t ix = ASUINT64(x);
|
||
|
int e = ix>>52;
|
||
|
int sign = e & 0x800;
|
||
|
e &= 0x7ff;
|
||
|
if (!e) {
|
||
|
ix = ASUINT64(x*0x1p63);
|
||
|
e = ix>>52 & 0x7ff;
|
||
|
e = e ? e-63 : 0x800;
|
||
|
}
|
||
|
ix &= (1ull<<52)-1;
|
||
|
ix |= 1ull<<52;
|
||
|
ix <<= 1;
|
||
|
e -= 0x3ff + 52 + 1;
|
||
|
return (struct num){ix,e,sign};
|
||
|
}
|
||
|
|
||
|
static void mul(uint64_t *hi, uint64_t *lo, uint64_t x, uint64_t y)
|
||
|
{
|
||
|
uint64_t t1,t2,t3;
|
||
|
uint64_t xlo = (uint32_t)x, xhi = x>>32;
|
||
|
uint64_t ylo = (uint32_t)y, yhi = y>>32;
|
||
|
|
||
|
t1 = xlo*ylo;
|
||
|
t2 = xlo*yhi + xhi*ylo;
|
||
|
t3 = xhi*yhi;
|
||
|
*lo = t1 + (t2<<32);
|
||
|
*hi = t3 + (t2>>32) + (t1 > *lo);
|
||
|
}
|
||
|
|
||
|
double fma(double x, double y, double z)
|
||
|
{
|
||
|
#pragma STDC FENV_ACCESS ON
|
||
|
|
||
|
/* normalize so top 10bits and last bit are 0 */
|
||
|
struct num nx, ny, nz;
|
||
|
nx = normalize(x);
|
||
|
ny = normalize(y);
|
||
|
nz = normalize(z);
|
||
|
|
||
|
if (nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN)
|
||
|
return x*y + z;
|
||
|
if (nz.e >= ZEROINFNAN) {
|
||
|
if (nz.e > ZEROINFNAN) /* z==0 */
|
||
|
return x*y + z;
|
||
|
return z;
|
||
|
}
|
||
|
|
||
|
/* mul: r = x*y */
|
||
|
uint64_t rhi, rlo, zhi, zlo;
|
||
|
mul(&rhi, &rlo, nx.m, ny.m);
|
||
|
/* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
|
||
|
|
||
|
/* align exponents */
|
||
|
int e = nx.e + ny.e;
|
||
|
int d = nz.e - e;
|
||
|
/* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
|
||
|
if (d > 0) {
|
||
|
if (d < 64) {
|
||
|
zlo = nz.m<<d;
|
||
|
zhi = nz.m>>64-d;
|
||
|
} else {
|
||
|
zlo = 0;
|
||
|
zhi = nz.m;
|
||
|
e = nz.e - 64;
|
||
|
d -= 64;
|
||
|
if (d == 0) {
|
||
|
} else if (d < 64) {
|
||
|
rlo = rhi<<64-d | rlo>>d | !!(rlo<<64-d);
|
||
|
rhi = rhi>>d;
|
||
|
} else {
|
||
|
rlo = 1;
|
||
|
rhi = 0;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
zhi = 0;
|
||
|
d = -d;
|
||
|
if (d == 0) {
|
||
|
zlo = nz.m;
|
||
|
} else if (d < 64) {
|
||
|
zlo = nz.m>>d | !!(nz.m<<64-d);
|
||
|
} else {
|
||
|
zlo = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* add */
|
||
|
int sign = nx.sign^ny.sign;
|
||
|
int samesign = !(sign^nz.sign);
|
||
|
int nonzero = 1;
|
||
|
if (samesign) {
|
||
|
/* r += z */
|
||
|
rlo += zlo;
|
||
|
rhi += zhi + (rlo < zlo);
|
||
|
} else {
|
||
|
/* r -= z */
|
||
|
uint64_t t = rlo;
|
||
|
rlo -= zlo;
|
||
|
rhi = rhi - zhi - (t < rlo);
|
||
|
if (rhi>>63) {
|
||
|
rlo = -rlo;
|
||
|
rhi = -rhi-!!rlo;
|
||
|
sign = !sign;
|
||
|
}
|
||
|
nonzero = !!rhi;
|
||
|
}
|
||
|
|
||
|
/* set rhi to top 63bit of the result (last bit is sticky) */
|
||
|
if (nonzero) {
|
||
|
e += 64;
|
||
|
d = a_clz_64(rhi)-1;
|
||
|
/* note: d > 0 */
|
||
|
rhi = rhi<<d | rlo>>64-d | !!(rlo<<d);
|
||
|
} else if (rlo) {
|
||
|
d = a_clz_64(rlo)-1;
|
||
|
if (d < 0)
|
||
|
rhi = rlo>>1 | (rlo&1);
|
||
|
else
|
||
|
rhi = rlo<<d;
|
||
|
} else {
|
||
|
/* exact +-0 */
|
||
|
return x*y + z;
|
||
|
}
|
||
|
e -= d;
|
||
|
|
||
|
/* convert to double */
|
||
|
int64_t i = rhi; /* i is in [1<<62,(1<<63)-1] */
|
||
|
if (sign)
|
||
|
i = -i;
|
||
|
double r = i; /* |r| is in [0x1p62,0x1p63] */
|
||
|
|
||
|
if (e < -1022-62) {
|
||
|
/* result is subnormal before rounding */
|
||
|
if (e == -1022-63) {
|
||
|
double c = 0x1p63;
|
||
|
if (sign)
|
||
|
c = -c;
|
||
|
if (r == c) {
|
||
|
/* min normal after rounding, underflow depends
|
||
|
on arch behaviour which can be imitated by
|
||
|
a double to float conversion */
|
||
|
float fltmin = 0x0.ffffff8p-63*FLT_MIN * r;
|
||
|
return DBL_MIN/FLT_MIN * fltmin;
|
||
|
}
|
||
|
/* one bit is lost when scaled, add another top bit to
|
||
|
only round once at conversion if it is inexact */
|
||
|
if (rhi << 53) {
|
||
|
i = rhi>>1 | (rhi&1) | 1ull<<62;
|
||
|
if (sign)
|
||
|
i = -i;
|
||
|
r = i;
|
||
|
r = 2*r - c; /* remove top bit */
|
||
|
|
||
|
/* raise underflow portably, such that it
|
||
|
cannot be optimized away */
|
||
|
{
|
||
|
double_t tiny = DBL_MIN/FLT_MIN * r;
|
||
|
r += (double)(tiny*tiny) * (r-r);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
/* only round once when scaled */
|
||
|
d = 10;
|
||
|
i = ( rhi>>d | !!(rhi<<64-d) ) << d;
|
||
|
if (sign)
|
||
|
i = -i;
|
||
|
r = i;
|
||
|
}
|
||
|
}
|
||
|
return scalbn(r, e);
|
||
|
}
|