112 lines
3.0 KiB
C
112 lines
3.0 KiB
C
|
/*
|
||
|
* Double-precision log(x) function.
|
||
|
*
|
||
|
* Copyright (c) 2018, Arm Limited.
|
||
|
* SPDX-License-Identifier: MIT
|
||
|
*/
|
||
|
|
||
|
#include "libc/math/math.h"
|
||
|
#include "libc/math/libm.h"
|
||
|
#include "libc/math/log_data.h"
|
||
|
|
||
|
#define T __log_data.tab
|
||
|
#define T2 __log_data.tab2
|
||
|
#define B __log_data.poly1
|
||
|
#define A __log_data.poly
|
||
|
#define Ln2hi __log_data.ln2hi
|
||
|
#define Ln2lo __log_data.ln2lo
|
||
|
#define N (1 << LOG_TABLE_BITS)
|
||
|
#define OFF 0x3fe6000000000000
|
||
|
|
||
|
/* Top 16 bits of a double. */
|
||
|
static inline uint32_t top16(double x)
|
||
|
{
|
||
|
return asuint64(x) >> 48;
|
||
|
}
|
||
|
|
||
|
double log(double x)
|
||
|
{
|
||
|
double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
|
||
|
uint64_t ix, iz, tmp;
|
||
|
uint32_t top;
|
||
|
int k, i;
|
||
|
|
||
|
ix = asuint64(x);
|
||
|
top = top16(x);
|
||
|
#define LO asuint64(1.0 - 0x1p-4)
|
||
|
#define HI asuint64(1.0 + 0x1.09p-4)
|
||
|
if (predict_false(ix - LO < HI - LO)) {
|
||
|
/* Handle close to 1.0 inputs separately. */
|
||
|
/* Fix sign of zero with downward rounding when x==1. */
|
||
|
if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
|
||
|
return 0;
|
||
|
r = x - 1.0;
|
||
|
r2 = r * r;
|
||
|
r3 = r * r2;
|
||
|
y = r3 *
|
||
|
(B[1] + r * B[2] + r2 * B[3] +
|
||
|
r3 * (B[4] + r * B[5] + r2 * B[6] +
|
||
|
r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
|
||
|
/* Worst-case error is around 0.507 ULP. */
|
||
|
w = r * 0x1p27;
|
||
|
double_t rhi = r + w - w;
|
||
|
double_t rlo = r - rhi;
|
||
|
w = rhi * rhi * B[0]; /* B[0] == -0.5. */
|
||
|
hi = r + w;
|
||
|
lo = r - hi + w;
|
||
|
lo += B[0] * rlo * (rhi + r);
|
||
|
y += lo;
|
||
|
y += hi;
|
||
|
return eval_as_double(y);
|
||
|
}
|
||
|
if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
|
||
|
/* x < 0x1p-1022 or inf or nan. */
|
||
|
if (ix * 2 == 0)
|
||
|
return __math_divzero(1);
|
||
|
if (ix == asuint64(INFINITY)) /* log(inf) == inf. */
|
||
|
return x;
|
||
|
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
|
||
|
return __math_invalid(x);
|
||
|
/* x is subnormal, normalize it. */
|
||
|
ix = asuint64(x * 0x1p52);
|
||
|
ix -= 52ULL << 52;
|
||
|
}
|
||
|
|
||
|
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
|
||
|
The range is split into N subintervals.
|
||
|
The ith subinterval contains z and c is near its center. */
|
||
|
tmp = ix - OFF;
|
||
|
i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
|
||
|
k = (int64_t)tmp >> 52; /* arithmetic shift */
|
||
|
iz = ix - (tmp & 0xfffULL << 52);
|
||
|
invc = T[i].invc;
|
||
|
logc = T[i].logc;
|
||
|
z = asdouble(iz);
|
||
|
|
||
|
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
|
||
|
/* r ~= z/c - 1, |r| < 1/(2*N). */
|
||
|
#if __FP_FAST_FMA
|
||
|
/* rounding error: 0x1p-55/N. */
|
||
|
r = __builtin_fma(z, invc, -1.0);
|
||
|
#else
|
||
|
/* rounding error: 0x1p-55/N + 0x1p-66. */
|
||
|
r = (z - T2[i].chi - T2[i].clo) * invc;
|
||
|
#endif
|
||
|
kd = (double_t)k;
|
||
|
|
||
|
/* hi + lo = r + log(c) + k*Ln2. */
|
||
|
w = kd * Ln2hi + logc;
|
||
|
hi = w + r;
|
||
|
lo = w - hi + r + kd * Ln2lo;
|
||
|
|
||
|
/* log(x) = lo + (log1p(r) - r) + hi. */
|
||
|
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
|
||
|
/* Worst case error if |y| > 0x1p-5:
|
||
|
0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
|
||
|
Worst case error if |y| > 0x1p-4:
|
||
|
0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
|
||
|
y = lo + r2 * A[0] +
|
||
|
r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
|
||
|
return eval_as_double(y);
|
||
|
}
|