cosmopolitan/test/tool/build/lib/divmul_test.c

590 lines
20 KiB
C
Raw Normal View History

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
Copyright 2020 Justine Alexandra Roberts Tunney
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include "libc/bits/progn.internal.h"
#include "libc/calls/struct/sigaction.h"
#include "libc/log/check.h"
#include "libc/runtime/gc.h"
#include "libc/sysv/consts/sa.h"
#include "libc/sysv/consts/sig.h"
#include "libc/testlib/ezbench.h"
#include "libc/testlib/testlib.h"
#include "libc/x/x.h"
#include "tool/build/lib/divmul.h"
#include "tool/build/lib/endian.h"
#include "tool/build/lib/flags.h"
#define CX 1
#define OSZ 00000000040
#define REXW 00000000100
#define RM(x) (0000001600 & ((x) << 007))
#define MOD(x) (0060000000 & ((x) << 026))
jmp_buf sigfpejmp;
struct Machine m[1];
struct sigaction oldsigfpe[1];
struct XedDecodedInst xedd[1];
void OnSigFpe(void) {
/* ProTip: gdb -ex 'handle SIGFPE nostop noprint pass' */
longjmp(sigfpejmp, 1);
}
void SetUp(void) {
m->xedd = xedd;
CHECK_NE(-1, xsigaction(SIGFPE, OnSigFpe, SA_NODEFER, 0, oldsigfpe));
}
void TearDown(void) {
m->xedd = xedd;
CHECK_NE(-1, sigaction(SIGFPE, oldsigfpe, NULL));
}
TEST(imul8, test) {
static const uint8_t A[] = {0x00, 0x01, 0x80, 0x7F, 0x81, 0x7E, 0xFF, 0xBF};
int i, j;
int16_t ax;
bool cf, of;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
Write8(m->ax, A[i]);
Write8(m->cx, A[j]);
OpMulAxAlEbSigned(m, MOD(3) | RM(CX));
asm volatile("imulb\t%3"
: "=a"(ax), "=@ccc"(cf), "=@cco"(of)
: "q"(A[j]), "0"(A[i])
: "cc");
EXPECT_EQ(ax, (int16_t)Read16(m->ax));
EXPECT_EQ(cf, GetFlag(m->flags, FLAGS_CF));
EXPECT_EQ(of, GetFlag(m->flags, FLAGS_OF));
}
}
}
TEST(imul16, test) {
static const uint16_t A[] = {0x0000, 0x0001, 0x8000, 0x7FFF, 0x8001, 0x7FFE,
0xFFFF, 0xBeef, 0x00b5, 0x00b6, 0xb504, 0xb505};
int i, j;
bool cf, of;
uint16_t dx, ax;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
Write16(m->ax, A[i]);
Write16(m->cx, A[j]);
OpMulRdxRaxEvqpSigned(m, OSZ | MOD(3) | RM(CX));
asm("imulw\t%4"
: "=d"(dx), "=a"(ax), "=@ccc"(cf), "=@cco"(of)
: "r"(A[j]), "1"(A[i])
: "cc");
EXPECT_EQ((int32_t)((uint32_t)dx << 16 | ax),
(int32_t)((uint32_t)Read16(m->dx) << 16 | Read16(m->ax)));
EXPECT_EQ(cf, GetFlag(m->flags, FLAGS_CF));
EXPECT_EQ(of, GetFlag(m->flags, FLAGS_OF));
}
}
}
TEST(imul32, test) {
static const uint32_t A[] = {0x00000000, 0x00000001, 0x80000000, 0x7FFFFFFF,
0x80000001, 0x7FFFFFFE, 0xFFFFFFFF, 0xDeadBeef,
0x000000b6, 0x0000b504, 0x0000b505, 0xb504f334};
int i, j;
bool cf, of;
uint32_t dx, ax;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
Write32(m->ax, A[i]);
Write32(m->cx, A[j]);
OpMulRdxRaxEvqpSigned(m, MOD(3) | RM(CX));
asm("imull\t%4"
: "=d"(dx), "=a"(ax), "=@ccc"(cf), "=@cco"(of)
: "r"(A[j]), "1"(A[i])
: "cc");
EXPECT_EQ((int64_t)((uint64_t)dx << 32 | ax),
(int64_t)((uint64_t)Read32(m->dx) << 32 | Read32(m->ax)));
EXPECT_EQ(cf, GetFlag(m->flags, FLAGS_CF));
EXPECT_EQ(of, GetFlag(m->flags, FLAGS_OF));
}
}
}
TEST(imul64, test) {
static const uint64_t A[] = {0x00000000, 0x00000001, 0x80000000, 0x7FFFFFFF,
0x80000001, 0x7FFFFFFE, 0xFFFFFFFF, 0xDeadBeef,
0x000000b6, 0x0000b504, 0x0000b505, 0xb504f334};
int i, j;
bool cf, of;
uint64_t dx, ax;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
Write64(m->ax, A[i]);
Write64(m->cx, A[j]);
OpMulRdxRaxEvqpSigned(m, REXW | MOD(3) | RM(CX));
asm("imulq\t%4"
: "=d"(dx), "=a"(ax), "=@ccc"(cf), "=@cco"(of)
: "r"(A[j]), "1"(A[i])
: "cc");
EXPECT_EQ((int128_t)((uint128_t)dx << 64 | ax),
(int128_t)((uint128_t)Read64(m->dx) << 64 | Read64(m->ax)));
EXPECT_EQ(cf, GetFlag(m->flags, FLAGS_CF));
EXPECT_EQ(of, GetFlag(m->flags, FLAGS_OF));
}
}
}
TEST(mul8, test) {
static const uint8_t A[] = {0x00, 0x01, 0x80, 0x7F, 0x81, 0x7E, 0xFF, 0xb6};
int i, j;
uint16_t ax;
bool cf, of;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
Write8(m->ax, A[i]);
Write8(m->cx, A[j]);
OpMulAxAlEbUnsigned(m, MOD(3) | RM(CX));
asm volatile("mulb\t%3"
: "=a"(ax), "=@ccc"(cf), "=@cco"(of)
: "q"(A[j]), "0"(A[i])
: "cc");
EXPECT_EQ(ax, Read16(m->ax));
EXPECT_EQ(cf, GetFlag(m->flags, FLAGS_CF));
EXPECT_EQ(of, GetFlag(m->flags, FLAGS_OF));
}
}
}
TEST(mul16, test) {
static const uint16_t A[] = {0x0000, 0x0001, 0x8000, 0x7FFF,
0x8001, 0x7FFE, 0xFFFF, 0x00b6};
int i, j;
bool cf, of;
uint16_t dx, ax;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
Write16(m->ax, A[i]);
Write16(m->cx, A[j]);
OpMulRdxRaxEvqpUnsigned(m, OSZ | MOD(3) | RM(CX));
asm("mulw\t%4"
: "=d"(dx), "=a"(ax), "=@ccc"(cf), "=@cco"(of)
: "r"(A[j]), "1"(A[i])
: "cc");
EXPECT_EQ((uint32_t)((uint32_t)dx << 16 | ax),
(uint32_t)((uint32_t)Read16(m->dx) << 16 | Read16(m->ax)));
EXPECT_EQ(cf, GetFlag(m->flags, FLAGS_CF));
EXPECT_EQ(of, GetFlag(m->flags, FLAGS_OF));
}
}
}
TEST(mul32, test) {
static const uint32_t A[] = {0x00000000, 0x00000001, 0x80000000, 0x7FFFFFFF,
0x80000001, 0x7FFFFFFE, 0xFFFFFFFF, 0x000000b5,
0x000000b6, 0x0000b504, 0x0000b505, 0xb504f334};
int i, j;
bool cf, of;
uint32_t dx, ax;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
Write32(m->ax, A[i]);
Write32(m->cx, A[j]);
OpMulRdxRaxEvqpUnsigned(m, MOD(3) | RM(CX));
asm("mull\t%4"
: "=d"(dx), "=a"(ax), "=@ccc"(cf), "=@cco"(of)
: "r"(A[j]), "1"(A[i])
: "cc");
EXPECT_EQ((uint64_t)((uint64_t)dx << 32 | ax),
(uint64_t)((uint64_t)Read32(m->dx) << 32 | Read32(m->ax)));
EXPECT_EQ(cf, GetFlag(m->flags, FLAGS_CF));
EXPECT_EQ(of, GetFlag(m->flags, FLAGS_OF));
}
}
}
TEST(mul64, test) {
static const uint64_t A[] = {0x00000000, 0x00000001, 0x80000000, 0x7FFFFFFF,
0x80000001, 0x7FFFFFFE, 0xFFFFFFFF, 0x000000b6,
0x0000b504, 0x0000b505, 0xb504f333, 0xb504f334};
int i, j;
bool cf, of;
uint64_t dx, ax;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
Write64(m->ax, A[i]);
Write64(m->cx, A[j]);
OpMulRdxRaxEvqpUnsigned(m, REXW | MOD(3) | RM(CX));
asm("mulq\t%4"
: "=d"(dx), "=a"(ax), "=@ccc"(cf), "=@cco"(of)
: "r"(A[j]), "1"(A[i])
: "cc");
EXPECT_EQ((uint128_t)((uint128_t)dx << 64 | ax),
(uint128_t)((uint128_t)Read64(m->dx) << 64 | Read64(m->ax)));
EXPECT_EQ(cf, GetFlag(m->flags, FLAGS_CF));
EXPECT_EQ(of, GetFlag(m->flags, FLAGS_OF));
}
}
}
TEST(idiv8, test) {
static const uint8_t A[] = {0x00, 0x01, 0x80, 0x7F, 0x81, 0x7E, 0xFF, 0xBF};
uint16_t remquo;
bool gotthrow, gotsigfpe;
int8_t i, j, k, w, x, a, b;
int8_t quotient, remainder;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
for (k = 0; k < ARRAYLEN(A); ++k) {
m->ax[1] = A[i];
m->ax[0] = A[j];
m->cx[0] = A[k];
gotthrow = false;
gotsigfpe = false;
if (!setjmp(m->onhalt)) {
OpDivAlAhAxEbSigned(m, MOD(3) | RM(CX));
} else {
gotthrow = true;
}
if (!setjmp(sigfpejmp)) {
asm("idivb\t%1"
: "=a"(remquo)
: "q"(A[k]), "0"((int16_t)(A[i] << 8 | A[j]))
: "cc");
} else {
gotsigfpe = true;
}
EXPECT_EQ(gotsigfpe, gotthrow);
if (!gotsigfpe && !gotthrow) {
quotient = (int8_t)remquo;
remainder = (int8_t)(remquo >> 8);
EXPECT_EQ(quotient, (int8_t)m->ax[0]);
EXPECT_EQ(remainder, (int8_t)m->ax[1]);
}
}
}
}
}
TEST(idiv16, test) {
static const uint16_t A[] = {0x0000, 0x0001, 0x8000, 0x7FFF,
0x8001, 0x7FFE, 0xFFFF, 0xBeef};
bool gotthrow, gotsigfpe;
int16_t i, j, k, w, x, a, b;
int16_t quotient, remainder;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
for (k = 0; k < ARRAYLEN(A); ++k) {
memcpy(m->dx, &A[i], 2);
memcpy(m->ax, &A[j], 2);
memcpy(m->cx, &A[k], 2);
if (!setjmp(m->onhalt)) {
gotthrow = false;
OpDivRdxRaxEvqpSigned(m, OSZ | MOD(3) | RM(CX));
} else {
gotthrow = true;
}
if (!setjmp(sigfpejmp)) {
gotsigfpe = false;
asm("idivw\t%2"
: "=d"(remainder), "=a"(quotient)
: "r"(A[k]), "0"(A[i]), "1"(A[j])
: "cc");
} else {
gotsigfpe = true;
}
EXPECT_EQ(gotsigfpe, gotthrow);
if (!gotsigfpe && !gotthrow) {
EXPECT_EQ(quotient, (int16_t)Read16(m->ax));
EXPECT_EQ(remainder, (int16_t)Read16(m->dx));
}
}
}
}
}
TEST(idiv32, test) {
static const uint32_t A[] = {0x00000000, 0x00000001, 0x80000000, 0x7FFFFFFF,
0x80000001, 0x7FFFFFFE, 0xFFFFFFFF, 0xDeadBeef};
bool gotthrow, gotsigfpe;
int32_t i, j, k, w, x, a, b;
int32_t quotient, remainder;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
for (k = 0; k < ARRAYLEN(A); ++k) {
memcpy(m->dx, &A[i], 4);
memcpy(m->ax, &A[j], 4);
memcpy(m->cx, &A[k], 4);
if (!setjmp(m->onhalt)) {
gotthrow = false;
OpDivRdxRaxEvqpSigned(m, MOD(3) | RM(CX));
} else {
gotthrow = true;
}
if (!setjmp(sigfpejmp)) {
gotsigfpe = false;
asm("idivl\t%2"
: "=d"(remainder), "=a"(quotient)
: "r"(A[k]), "0"(A[i]), "1"(A[j])
: "cc");
} else {
gotsigfpe = true;
}
EXPECT_EQ(gotsigfpe, gotthrow);
if (!gotsigfpe && !gotthrow) {
EXPECT_EQ(quotient, (int32_t)Read32(m->ax));
EXPECT_EQ(remainder, (int32_t)Read32(m->dx));
}
}
}
}
}
TEST(idiv64, test) {
static const uint64_t A[] = {0x0000000000000000, 0x0000000000000001,
0x8000000000000000, 0x7FFFFFFFFFFFFFFF,
0x8000000000000001, 0x7FFFFFFFFFFFFFFE,
0xFFFFFFFFFFFFFFFF, 0x00DeadBeefCafe00};
bool gotthrow, gotsigfpe;
int64_t i, j, k, w, x, a, b;
int64_t quotient, remainder;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
for (k = 0; k < ARRAYLEN(A); ++k) {
memcpy(m->dx, &A[i], 8);
memcpy(m->ax, &A[j], 8);
memcpy(m->cx, &A[k], 8);
if (!setjmp(m->onhalt)) {
gotthrow = false;
OpDivRdxRaxEvqpSigned(m, REXW | MOD(3) | RM(CX));
} else {
gotthrow = true;
}
if (!setjmp(sigfpejmp)) {
gotsigfpe = false;
asm("idivq\t%2"
: "=d"(remainder), "=a"(quotient)
: "r"(A[k]), "0"(A[i]), "1"(A[j])
: "cc");
} else {
gotsigfpe = true;
}
EXPECT_EQ(gotsigfpe, gotthrow);
if (!gotsigfpe && !gotthrow) {
EXPECT_EQ(quotient, (int64_t)Read64(m->ax));
EXPECT_EQ(remainder, (int64_t)Read64(m->dx));
}
}
}
}
}
TEST(div, test) {
static const uint8_t A[] = {0x00, 0x01, 0x80, 0x7F, 0x81, 0x7E, 0xFF, 0xBF};
uint16_t remquo;
bool gotthrow, gotsigfpe;
uint8_t i, j, k, w, x, a, b;
uint8_t quotient, remainder;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
for (k = 0; k < ARRAYLEN(A); ++k) {
m->ax[1] = A[i];
m->ax[0] = A[j];
m->cx[0] = A[k];
gotthrow = false;
gotsigfpe = false;
if (!setjmp(m->onhalt)) {
OpDivAlAhAxEbUnsigned(m, MOD(3) | RM(CX));
} else {
gotthrow = true;
}
if (!setjmp(sigfpejmp)) {
asm("divb\t%1"
: "=a"(remquo)
: "q"(A[k]), "0"((uint16_t)(A[i] << 8 | A[j]))
: "cc");
} else {
gotsigfpe = true;
}
EXPECT_EQ(gotsigfpe, gotthrow);
if (!gotsigfpe && !gotthrow) {
quotient = (uint8_t)remquo;
remainder = (uint8_t)(remquo >> 8);
EXPECT_EQ(quotient, (uint8_t)m->ax[0]);
EXPECT_EQ(remainder, (uint8_t)m->ax[1]);
}
}
}
}
}
TEST(div16, test) {
static const uint16_t A[] = {0x0000, 0x0001, 0x8000, 0x7FFF,
0x8001, 0x7FFE, 0xFFFF, 0xBeef};
bool gotthrow, gotsigfpe;
uint16_t i, j, k, w, x, a, b;
uint16_t quotient, remainder;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
for (k = 0; k < ARRAYLEN(A); ++k) {
memcpy(m->dx, &A[i], 2);
memcpy(m->ax, &A[j], 2);
memcpy(m->cx, &A[k], 2);
if (!setjmp(m->onhalt)) {
gotthrow = false;
OpDivRdxRaxEvqpUnsigned(m, OSZ | MOD(3) | RM(CX));
} else {
gotthrow = true;
}
if (!setjmp(sigfpejmp)) {
gotsigfpe = false;
asm("divw\t%2"
: "=d"(remainder), "=a"(quotient)
: "r"(A[k]), "0"(A[i]), "1"(A[j])
: "cc");
} else {
gotsigfpe = true;
}
EXPECT_EQ(gotsigfpe, gotthrow);
if (!gotsigfpe && !gotthrow) {
EXPECT_EQ(quotient, (uint16_t)Read16(m->ax));
EXPECT_EQ(remainder, (uint16_t)Read16(m->dx));
}
}
}
}
}
TEST(div32, test) {
static const uint32_t A[] = {0x00000000, 0x00000001, 0x80000000, 0x7FFFFFFF,
0x80000001, 0x7FFFFFFE, 0xFFFFFFFF, 0xDeadBeef};
bool gotthrow, gotsigfpe;
uint32_t i, j, k, w, x, a, b;
uint32_t quotient, remainder;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
for (k = 0; k < ARRAYLEN(A); ++k) {
memcpy(m->dx, &A[i], 4);
memcpy(m->ax, &A[j], 4);
memcpy(m->cx, &A[k], 4);
if (!setjmp(m->onhalt)) {
gotthrow = false;
OpDivRdxRaxEvqpUnsigned(m, MOD(3) | RM(CX));
} else {
gotthrow = true;
}
if (!setjmp(sigfpejmp)) {
gotsigfpe = false;
asm("divl\t%2"
: "=d"(remainder), "=a"(quotient)
: "r"(A[k]), "0"(A[i]), "1"(A[j])
: "cc");
} else {
gotsigfpe = true;
}
EXPECT_EQ(gotsigfpe, gotthrow);
if (!gotsigfpe && !gotthrow) {
EXPECT_EQ(quotient, (uint32_t)Read32(m->ax));
EXPECT_EQ(remainder, (uint32_t)Read32(m->dx));
}
}
}
}
}
TEST(div64, test) {
static const uint64_t A[] = {0x0000000000000000, 0x0000000000000001,
0x8000000000000000, 0x7FFFFFFFFFFFFFFF,
0x8000000000000001, 0x7FFFFFFFFFFFFFFE,
0xFFFFFFFFFFFFFFFF, 0x00DeadBeefCafe00};
bool gotthrow, gotsigfpe;
uint64_t i, j, k, w, x, a, b;
uint64_t quotient, remainder;
for (i = 0; i < ARRAYLEN(A); ++i) {
for (j = 0; j < ARRAYLEN(A); ++j) {
for (k = 0; k < ARRAYLEN(A); ++k) {
memcpy(m->dx, &A[i], 8);
memcpy(m->ax, &A[j], 8);
memcpy(m->cx, &A[k], 8);
if (!setjmp(m->onhalt)) {
gotthrow = false;
OpDivRdxRaxEvqpUnsigned(m, REXW | MOD(3) | RM(CX));
} else {
gotthrow = true;
}
if (!setjmp(sigfpejmp)) {
gotsigfpe = false;
asm("divq\t%2"
: "=d"(remainder), "=a"(quotient)
: "r"(A[k]), "0"(A[i]), "1"(A[j])
: "cc");
} else {
gotsigfpe = true;
}
EXPECT_EQ(gotsigfpe, gotthrow);
if (!gotsigfpe && !gotthrow) {
EXPECT_EQ(quotient, (uint64_t)Read64(m->ax));
EXPECT_EQ(remainder, (uint64_t)Read64(m->dx));
}
}
}
}
}
BENCH(imul, bench) {
volatile register int8_t x8, y8;
volatile register int16_t x16, y16;
volatile register int32_t x32, y32;
volatile register int64_t x64, y64;
EZBENCH2("imul8", PROGN(x8 = 7, y8 = 18), y8 *= x8);
EZBENCH2("imul16", PROGN(x16 = 123, y16 = 116), y16 *= x16);
EZBENCH2("imul32", PROGN(x32 = 0x238943, y32 = 0x238), y32 *= x32);
EZBENCH2("imul64", PROGN(x64 = 0x23894329838932, y64 = 0x238), y64 *= x64);
}
BENCH(idiv, bench) {
volatile register int8_t x8, y8;
volatile register int16_t x16, y16;
volatile register int32_t x32, y32;
volatile register int64_t x64, y64;
EZBENCH2("idiv8", PROGN(x8 = 7, y8 = 18), x8 /= y8);
EZBENCH2("idiv16", PROGN(x16 = 123, y16 = 116), x16 /= y16);
EZBENCH2("idiv32", PROGN(x32 = 0x238943298, y32 = 0x238), x32 /= y32);
EZBENCH2("idiv64", PROGN(x64 = 0x23894329838932, y64 = 0x238), x64 /= y64);
}
BENCH(mul, bench) {
volatile register uint8_t x8, y8;
volatile register uint16_t x16, y16;
volatile register uint32_t x32, y32;
volatile register uint64_t x64, y64;
EZBENCH2("mul8", PROGN(x8 = 7, y8 = 18), y8 *= x8);
EZBENCH2("mul16", PROGN(x16 = 123, y16 = 116), y16 *= x16);
EZBENCH2("mul32", PROGN(x32 = 0x238943, y32 = 0x238), y32 *= x32);
EZBENCH2("mul64", PROGN(x64 = 0x23894329838932, y64 = 0x238), y64 *= x64);
}
BENCH(div, bench) {
volatile register uint8_t x8, y8;
volatile register uint16_t x16, y16;
volatile register uint32_t x32, y32;
volatile register uint64_t x64, y64;
EZBENCH2("div8", PROGN(x8 = 7, y8 = 18), x8 /= y8);
EZBENCH2("div16", PROGN(x16 = 123, y16 = 116), x16 /= y16);
EZBENCH2("div32", PROGN(x32 = 0x238943298, y32 = 0x238), x32 /= y32);
EZBENCH2("div64", PROGN(x64 = 0x23894329838932, y64 = 0x238), x64 /= y64);
}