cosmopolitan/third_party/duktape/duk_heap_hashstring.c

117 lines
4.2 KiB
C
Raw Normal View History

2020-06-15 14:18:57 +00:00
/*
* String hash computation (interning).
*
* String hashing is performance critical because a string hash is computed
* for all new strings which are candidates to be added to the string table.
* However, strings actually added to the string table go through a codepoint
* length calculation which dominates performance because it goes through
* every byte of the input string (but only for strings added).
*
* The string hash algorithm should be fast, but on the other hand provide
* good enough hashes to ensure both string table and object property table
* hash tables work reasonably well (i.e., there aren't too many collisions
* with real world inputs). Unless the hash is cryptographic, it's always
* possible to craft inputs with maximal hash collisions.
*
* NOTE: The hash algorithms must match tools/dukutil.py:duk_heap_hashstring()
* for ROM string support!
*/
#include "third_party/duktape/duk_internal.h"
#if defined(DUK_USE_STRHASH_DENSE)
/* Constants for duk_hashstring(). */
#define DUK__STRHASH_SHORTSTRING 4096L
#define DUK__STRHASH_MEDIUMSTRING (256L * 1024L)
#define DUK__STRHASH_BLOCKSIZE 256L
DUK_INTERNAL duk_uint32_t duk_heap_hashstring(duk_heap *heap, const duk_uint8_t *str, duk_size_t len) {
duk_uint32_t hash;
/* Use Murmurhash2 directly for short strings, and use "block skipping"
* for long strings: hash an initial part and then sample the rest of
* the string with reasonably sized chunks. An initial offset for the
* sampling is computed based on a hash of the initial part of the string;
* this is done to (usually) avoid the case where all long strings have
* certain offset ranges which are never sampled.
*
* Skip should depend on length and bound the total time to roughly
* logarithmic. With current values:
*
* 1M string => 256 * 241 = 61696 bytes (0.06M) of hashing
* 1G string => 256 * 16321 = 4178176 bytes (3.98M) of hashing
*
* XXX: It would be better to compute the skip offset more "smoothly"
* instead of having a few boundary values.
*/
/* note: mixing len into seed improves hashing when skipping */
duk_uint32_t str_seed = heap->hash_seed ^ ((duk_uint32_t) len);
if (len <= DUK__STRHASH_SHORTSTRING) {
hash = duk_util_hashbytes(str, len, str_seed);
} else {
duk_size_t off;
duk_size_t skip;
if (len <= DUK__STRHASH_MEDIUMSTRING) {
skip = (duk_size_t) (16 * DUK__STRHASH_BLOCKSIZE + DUK__STRHASH_BLOCKSIZE);
} else {
skip = (duk_size_t) (256 * DUK__STRHASH_BLOCKSIZE + DUK__STRHASH_BLOCKSIZE);
}
hash = duk_util_hashbytes(str, (duk_size_t) DUK__STRHASH_SHORTSTRING, str_seed);
off = DUK__STRHASH_SHORTSTRING + (skip * (hash % 256)) / 256;
/* XXX: inefficient loop */
while (off < len) {
duk_size_t left = len - off;
duk_size_t now = (duk_size_t) (left > DUK__STRHASH_BLOCKSIZE ? DUK__STRHASH_BLOCKSIZE : left);
hash ^= duk_util_hashbytes(str + off, now, str_seed);
off += skip;
}
}
#if defined(DUK_USE_STRHASH16)
/* Truncate to 16 bits here, so that a computed hash can be compared
* against a hash stored in a 16-bit field.
*/
hash &= 0x0000ffffUL;
#endif
return hash;
}
#else /* DUK_USE_STRHASH_DENSE */
DUK_INTERNAL duk_uint32_t duk_heap_hashstring(duk_heap *heap, const duk_uint8_t *str, duk_size_t len) {
duk_uint32_t hash;
duk_size_t step;
duk_size_t off;
/* Slightly modified "Bernstein hash" from:
*
* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx
*
* Modifications: string skipping and reverse direction similar to
* Lua 5.1.5, and different hash initializer.
*
* The reverse direction ensures last byte it always included in the
* hash which is a good default as changing parts of the string are
* more often in the suffix than in the prefix.
*/
hash = heap->hash_seed ^ ((duk_uint32_t) len); /* Bernstein hash init value is normally 5381 */
step = (len >> DUK_USE_STRHASH_SKIP_SHIFT) + 1;
for (off = len; off >= step; off -= step) {
DUK_ASSERT(off >= 1); /* off >= step, and step >= 1 */
hash = (hash * 33) + str[off - 1];
}
#if defined(DUK_USE_STRHASH16)
/* Truncate to 16 bits here, so that a computed hash can be compared
* against a hash stored in a 16-bit field.
*/
hash &= 0x0000ffffUL;
#endif
return hash;
}
#endif /* DUK_USE_STRHASH_DENSE */